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CHAPTER 1

Introduction

In a rather short period of time, game theory has become one of the
most powerful analytical tools in the study of politics. From its ear-
liest applications in electoral and legislative behavior, game theoretic
models have proliferated in such diverse areas as international secu-
rity, ethnic cooperation, to democratization. Indeed all of the major
fields in political science have been the recipients of important contri-
butions from political game theoretic models. Rarely does an issue of
the American Political Science Review, the American Journal of Po-
litical Science, or International Organization appear without at least
one article formulating a new game theoretic application to politics or
providing an empirical test of an existing one.
Nevertheless, applications of game theory have not developed as

fast as they have in economics. One of the consequences of this un-
even development is that most political scientists who wish to learn
game theory are forced to rely on textbooks written by and for econo-
mists. While there are many excellent economic game theory texts,
their treatments of the subject are often not well-suited to the needs
of many political scientists. First and perhaps most importantly, the
applications and topics are generally those of interest to economists.
For example, it is not always obvious to novice political scientists what
duopoly or auction theory tells us about political phenomena. Alter-
natively, there are topics such as voting theory that are indispensable
to political game theorists which receive scant coverage in economics
texts. Finally, many economics treatments presume some level of ex-
posure to ideas in classical price theory. Thus, the entry barriers
to political scientists are not only the math, but also a knowledge of
demand curves, marginal rates of substitution, and the like.
Certainly, there have been a few texts by and for political scientists

such as those by Ordeshook and Morrow. However, we feel that each
is dated both in terms of the applications but also in terms of the needs
of modern political science. Ordeshook remains an outstanding treat-
ment of social choice and spatial theory, yet it was written well before
the emergence of non-cooperative theory as the dominant paradigm in
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2 1. INTRODUCTION

political game theory. Morrow does provide an accessible introduction
to the tools of non-cooperative game theory. However, the analytical
level of his presentation falls somewhat below the contemporary needs
of students of political game theory. It has also been a decade since its
publication — a decade in which there have been hundreds of important
articles and books deploying the tools of game theory. We feel that
there is a need to introduce today’s students to today’s literature.
So we kept several goals in mind while writing this book. First, we

wanted to write a textbook on political game theory instead of a book
on abstract or economic game theory. We wanted to focus on appli-
cations of interest to political scientists. We wanted to present topics
that are unique to political analysis. Secondly, in writing a book for
political scientists, we wanted to be cognizant of the diversity of back-
grounds and interests in political science. We recognize that most
doctoral students in the field enter graduate school with limited math-
ematical and modelling backgrounds. However, we felt that it would
not serve even those students to ignore the role of mathematical rigor
and the importance of theoretical concepts in contemporary political
models. Thus, for those students we have included a detailed mathe-
matical appendix covering necessary tools ranging from set theory to
basic optimization. At the other end of the spectrum are students who
come to graduate study in political science with strong backgrounds in
mathematics and economics. We wanted to write a book that would
be useful to that audience as well and have chosen to provide in depth
coverage of some more difficult and subtle concepts that are of the first
importance to political game theory. As a result, we have included a
number of “starred” advanced sections which provide a bit more detail
about the analytical and mathematical structure of the models that we
encounter. All of these can be safely skipped upon first readings for
those not quite ready for the more technical material.

1. Organization of the Book

In terms of the organization, our book departs from standard treat-
ments by including a number of topics that are either specifically rel-
evant for political science or designed for remediation in areas which
students of political science often have limited background. Chapter 2
is reasonably self contained exposition of classical choice theory under
certainty. In this chapter, we lay out the basic ideas of preferences and
their relation to utility theory. We prove a few key results, but oth-
erwise focus on providing the intuition and language of rational choice
theory. We also provide a section on spatial or Euclidean preferences
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which play a key role in voting theory as well as applications in electoral
and legislative politics.
In chapter 3, we consider how agents make choices under uncer-

tainty. We develop the standard von Neumann-Morgenstern expected
utility model, but also consider some of the most serious criticisms
levied against it. In addition to the standard treatment of preferences
for risk, we discuss the special implications of risk when actors have
spatial preferences.
Chapter 4 is a cursory review of social choice theory. The chapter is

not intended to be a replacement for full-length texts such as those by
Peter Ordeshook and David Austen-Smith and Jeff Banks, but primar-
ily as a reference for those ideas and concepts in social choice theory
that have become integral parts of formal political science, such as the
impossibility theorem and the non-existence of the majority core.
Chapter 5 begins our treatment of non-cooperative game theory

which lies at the heart of contemporary formal political theory. We
examine normal form games with complete information and present the
fundamental solution concept of Nash equilibrium. The theoretical
development is fairly standard but we include a number of important
political applications. We review the standard Downsian model of
electoral competition as well as some more recent extensions by Donald
Wittman and Randy Calvert. We also present several models of private
contributions to public goods based on the work of Thomas Palfrey and
Howard Rosenthal. In chapter 6, we extend the normal form model
where agents are uncertain about the payoffs associated with different
strategy combinations. After presenting the relevant solution concept,
Bayesian Nash equilibrium, we look at incomplete information versions
of many of the models reviewed in chapter 5. This allows the reader to
get a good sense of the strategic implications of uncertainty. We present
the Palfrey-Rosenthal model with complete and incomplete information
to give the reader a sense of the implications (and often the lack of )
of different informational assumptions.
Chapter 7 considers dynamic, multi-stage games of complete in-

formation and develops the notions of subgame perfection. Here we
focus on a number of applications drawn from legislative politics, demo-
cratic transitions, coalition formation, and international crisis bargain-
ing. In chapter 8, we consider dynamic games where some players are
imperfectly informed about the payoffs to different strategies. After
developing the solution concepts relevant for such models, we explore
a number of applications drawn from legislative politics, campaign fi-
nance, and international bargaining. Much of this chapter is focused
on the important and broadly applied class of signaling games.
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Chapter 9 reviews the theory of repeated games and their applica-
tion in political science. The role of discounting and structure of folk
theorems in repeated games is the primary focus of the chapter.
In chapter 12 we consider various applications of bargaining theory.

We begin with the canonical model of Rubinstein and its majority rule
version developed by Baron and Ferejohn. We then consider several
examples of bargaining with incomplete information.
In chapter 11, we present the mechanism design approach to model-

ing institutions. Here the focus is on the selection of games that induce
equilibrium behavior to meet certain ends. We discuss a number of
recent applications to electoral politics and organizational design. We
build on the work of chapter 8, drawing connections between signaling
games and mechanism design.
Finally, to keep the book as self contained as possible, chapter 12

provides a review of all of the mathematics that are used in the book.
Topics which are integral to the development of key theoretical results
or tools for analyzing applications are drawn from the fields of set the-
ory, real analysis, linear algebra, calculus, optimization and probability
theory. Indeed this chapter may serve as a basis for review, self-study
or a formal course in mathematics for students interested in working
at the frontier of political game theory.



CHAPTER 2

The Theory of Choice

The starting point for almost all of political game theory is the idea
that individuals rationally pursue goals subject to constraints imposed
by physical resources as well as the behavior of other actors. Such an
assumption is often controversial. Indeed one of the most contentious
debates in political science is the role of rationality and intentionality
as a predictor of political behavior. However, we will defer debates
between homo economicus and homo sociologicus and jump right into
the classical model of rational choice.
For almost all of our purposes, it is sufficient to define rationality

in terms of a few simple ideas:

(1) Confronted with any two options, which we might denote x
and y, an individual can determine whether he does not prefer
option x to option y or whether he does not prefer y to x, or
both. When preferences satisfy this property, we say they are
complete.

(2) Confronted with three options x, y, and z, if an individual does
not prefer y to x and does not prefer z to y then it must be the
case that she does not prefer z to x. Preferences satisfying
this property are transitive.

Roughly speaking, our definition of rational behavior is that con-
sistent with complete and transitive preferences. Sometimes behavior
dictated solely by properties 1 and 2 is called “thin” rationality. This
is because properties 1 and 2 are not predicated in any way on as-
sumptions about the substantive content of human desires. Thus,
thin rationality contrasts with “thicker” notions of rationality where
specific goals such as wealth, status, or fame are postulated. The thin
characterization of rationality is consistent with a very large number
of these substantive goals. In principal, thinly rational agents could
be motivated by any number of factors including ideology, normative
values, or even religion. As long as these belief systems produce com-
plete and transitive orderings over personal and social outcomes, we can
model the behavior they produce using the classical model of choice.

5



6 2. THE THEORY OF CHOICE

While it may be appealing to deal with models that are indepen-
dent of assumptions about specific goals, it will often be desirable to
make stronger assumptions about preferences. For example, we might
assume that interest groups wish to maximize the wealth of its mem-
bers or that politicians wish to maximize their reelection chances. In
subsequent chapters, we will explore models that makes these types of
assumptions about agent preferences. But rational models may be just
as useful for models of activists who wish to minimize environmental
degradation or the number of abortions for principled, non-material
reasons.
In the following sections, we develop the classical theory of choice

under certainty. By certainty, we mean simply that the agent has suf-
ficient information about the choice environment that she can perfectly
predict the consequences of each of her actions. Thus, certainty means
only that there is no analytical difference between assuming that polit-
ical actors choose actions based on the desired outcomes which result
from those actions, or that they choose those outcomes directly. In
later chapters, we will examine choice under uncertainty — the actor’s
lack of knowledge of some feature of the choice environment leads her
to choose actions which have uncertain consequences.

1. Finite Sets of Actions and Outcomes

We begin by considering the simple case of an agent who faces a
finite numbers of actions from which to choose. We denote these
choices as a set A = {a1, ..., ak} . For example, a leader involved in
an international crisis might face the following set of alternatives A =
{send in the troops, negotiate, do nothing} whereas an American voter
might choose amongA = {vote Democrat, vote Republican, abstain} .
As mentioned above in this chapter we assume that agents have

complete information, that is they are sufficiently knowledge about
the context of their choices that they can perfectly predict the con-
sequences of each action. To capture this idea formally, we define
outcome sets X = {x1, ..., xn}. Following one of our examples, these
might be X = {win major concessions and lose troops, win minor con-
cessions, status quo}. The assumption of certainty then implies that
each action a ∈ A maps directly on to one and only one x ∈ X. For-
mally, we assume that there exists a function x : A → X that maps
each action into a specific outcome. We also assume that all of the
outcomes in X are feasible, that is each is the consequence of at least
one action. Formally, xi is feasible if there exist an a ∈ A such that
x (a) = xi. With the assumptions of certainty and feasibility, it makes
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little difference whether we speak of an agent’s preferences over actions
or his preferences over outcomes. Thus, we concentrate on the agent’s
preferences over outcomes and are uninterested in the action that she
must choose to attain the desired outcome. In chapter 3, the assump-
tion of uncertainty or incomplete information makes the distinctions
between actions and outcomes relevant.
We now turn to the concept of preferences and the types of re-

strictions that our two simple notions place on what outcome rational
individuals may choose. Formally, preferences are modelled as a bi-
nary relation R which represents “weak preference.” The notation
xiRxj means that outcome xj is not preferred to policy xi or that xi is
“weakly” preferred to xj.1 To help cement ideas, note that R is similar
to the binary relation ≥ (greater than or equal) which operates on real
numbers.
Given the weak preference relationR, we define two other important

binary relations: strict preference and indifference.

Definition 2.1. Given any x, y ∈ X we say xPy if and only if
xRy and not yRx. We say xIy iff xRy and yRx.

Accordingly, P denotes strict preference and I denotes indifference.
Returning to the example of ≥ on X, the strict preference relation
derived from ≥ is equivalent to the relation > and the indifference
relation is equivalent to the relation =.
While preferences, in the form of binary relations, are a useful start-

ing point, it is choices that we are ultimately interested in. Given a
set of preferences, we could hardly call an agent’s behavior rational
unless she selected an outcome that she valued at least as much as any
other. Consequently, we expect a rational agent to choose an x∗ ∈ X
for which x∗Ry for every y ∈ X. However, without adding a little bit
more structure on to her preferences, there is no guarantee that such a
maximal outcome exists. Thus, we now turn to the conditions on X
and R that insure such a “best” choice is meaningful and well-defined.
We start with the following formal definition.

Definition 2.2. Given a set X and weak preference relation R on
X, the maximal set M(R,X) ⊂ X is defined as follows M(R,X) =
{x ∈ X : xRy ∀ y ∈ X}

Thus, a fundamental tenant of rationality should be that agents
choose outcomes from the maximal set. Of course, this require-
ment only makes sense if the maximal set is not empty i.e. M(R,X) 6=

1Formally, R is a subset of X ×X such that if (x, y) ∈ R than xRy.
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∅. Thus, we are most interested in the properties of preferences that
guarantee that M(R,X) has at least one element.
The most obvious problem that might lead to an empty maximal

set is that R is silent between a pair of outcomes say x and y. If
neither xRy or yRx then it is not clear what a “rational choice” would
be. Two conditions insure that all elements of X are ordered.

Definition 2.3. A binary relation R on X is
(i) complete if for all x, y ∈ X with x 6= y, either xRy or yRx or

both.
(ii) reflexive if for all x ∈ X, xRx.

Completeness simply means that the agent can compare any two
outcomes. This is probably not a terribly controversial assumption
(though we all know people who can’t seem to make their minds up).
Reflexivity is a technical condition and some authors choose to define
completeness in a slightly different manner that also captures what we
call reflexivity.
While completeness and reflexivity get us closer to a “rational” pref-

erence relation they are not sufficient. We need to rule out problems
like xRy, yRz and zRx. The problem with such preferences is that
there is no reasonable choice—why choose y when you can choose x,
why choose x when you can choose z, and why choose z when you can
choose y. Each of the following conditions on preferences resolve this
problem.

Definition 2.4. A binary relation R on X is
(1) Transitive if for all x, y, z ∈ X if xRy and yRz then xRz.
(2) Quasi-transitive if for all x, y, z ∈ X if xPy and yPz then xPz.
(3) Acyclic if for all {x, y, z, ...., a, b} ∈ X if xPy and yPz ... and

aPb then xRb

Note the subtle differences among these definitions. Transitivity
and quasi-transitivity may seem innocuous but they are reasonably
strong assumptions which might be violated even by very reasonable
behavior. For example, suppose X is a set of 1000 different bottles
of beer. Beer b1 has had one drop of beer replaced with one drop of
plain water while b2 has had two drops replaced and so on to b1000.
Unless you are a master brewer, b1I b2, and b2I b3, . . . , and b999I b1000.
Since xIy implies xRy (by the definition of I) this would imply that
b1000Rb999, . . . , b2Rb1 and if the relation is transitive we are left with
b1000Rb1. But clearly, b1Pb1000.2 Note however that the assumption of

2This is approximately the difference between Guiness and Coors Light.
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acyclicity does not suffer from this problem and is typically sufficient
for our purposes. However, despite the problems associated with tran-
sitivity, we will maintain it as an assumption (rather than acyclicity)
to simplify many of the results below.

Definition 2.5. Given a set X a weak ordering is a binary relation
that is complete, reflexive and transitive.

It is not difficult to see that transitivity rules out exactly the cycle
xRy, yRz and zRx considered above. Note that our recurring example
of ≥ satisfies all of the conditions for a weak ordering. We can now
state our first result.

Theorem 2.1. IfX is finite and R is a weak ordering thenM(R,X) 6=
∅.

Thus, we can guarantee that there is a best choice so long as we are
willing to assume that the choice set is finite and that R is complete,
reflexive, and transitive. The intuition behind this theorem is quite
straightforward. Consider an outcome set X with three elements say
x,y, and z. IfM(R,X) = ∅, then by definition x and y must be weakly
preferred to z, y and z must be weakly preferred to x, and that x and
z must be weakly preferred to y. Thus, the only possibility that does
not violate transitivity is that xIyIz which implies thatM(R,X) = X.
We can extend this logic to any size X.

Proof. Assume that X is finite and R is complete, reflexive, and
transitive. We establish the result by induction on the number of
elements in X.
Step 1: If X has 1 element (i.e. X = {x}), then by reflexivity

xRx and thus M(R,X) = {x}.
Step 2: We show that if it is true that for any X 0 with n elements

R0 a weak ordering implies that M(R0, X 0) 6= ∅ then for any X with
n+ 1 elements when R is a weak ordering on X, M(R,X) 6= ∅.
-Proof of step 2: assume that for any X 0 with n elements R0

a weak ordering on X 0 implies that M(R0,X 0) 6= ∅. Now consider
a set X with n + 1 elements. For arbitrary x ∈ X it is true that
X = X 0 ∪ {x} with X 0 a set having n elements. By assumption
M(R0, X 0) 6= ∅. So for an arbitrary y ∈M(R0,X 0) either yRx or xRy
or both by completeness.
—If yRx then since y ∈M(R0, X 0) we have yRz for all z ∈ X 0 ∪ {x}

and thus y ∈M(R,X) and the step 2 result is established.
—If it is not the case that yRx then we have xRy. Since y ∈

M(R0, X 0) we have yRz for any z ∈ X 0. Thus for any z ∈ X 0 we have
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xRy and yRz.Since R is transitive this implies that we have xRz for
any z ∈ X 0. This and xRy imply that for any w ∈ X 0 we have xRw
and thus x ∈M(R,X) and the step 2 result is established.
Step 3: By steps 1 and 2 for any finite sized X if R is a weak

order on X then M(R,X) 6= ∅.¥ ¤
It turns out that a weak ordering is not needed for M(R,X) but

the proof is a bit more complicated so we leave it for an exercise.

Theorem 2.2. AssumeX is finite and R is a complete and reflexive
binary relation on X. M(R,S) 6= ∅ on any S ⊂ X (except S = ∅) iff
R is acyclic.

Even with a finite choice space and no uncertainty the theory of
choice is fairly rich. Austen-Smith and Banks (1999) is a good first
source for students interested in going further. Many economists and
psychologists, have been concerned about the assumption of complete-
ness and a theory of choice without this condition has been derived.
In the next, more technical, section, we consider rational choice

when the outcome space is not finite, such as the real line. We derive
an analog to theorem 1 for non-finite choice sets. While the results
are conceptually similar, additional mathematical structure needs to
be placed on the choice sets and preferences.

2. Continuous Outcome Spaces*

2.1. Non-emptyness of M(R,X). Examination of the argument
for theorem 1 demonstrates that the fact that the choice space was finite
was useful. This allowed us to prove the result by induction for any
number of outcomes. However, when there is an infinite number of
choices, this approach is mathematically inappropriate. Thus, when
agents choose from a choice space that is a continuum (e.g. the set of
real numbers denoted R or the set [0, 1] = {x ∈ R : x ≥ 0 and x ≤ 1})
more structure on preferences is needed to insure that M(R,S) 6= ∅.
Two simple examples demonstrate why things can go awry.

Example 2.1. Let X = (0, 1) (or let X = R1) and let R on R1 be
equivalent to ≥ so that xRy iff x ≥ y The set M(≥,X) is empty.
To see why M(≥, (0, 1)) is empty, note that for every x ∈ X there

exists some y ∈ X for which y > x. Thus there can be no x such that
xRy for all y ∈ X. In this example the fact that (0, 1) has no biggest
element results in the emptiness of the maximal set. Note however that
if X were a closed interval such as [0, 1], we wouldn’t have a problem
as M(≥, [0, 1]) = 1. This is a strong hint that general results about
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the non-emptiness of the maximal set may depend on the choice set
being “closed.”

Example 2.2. Let X = [0, 1] and define R on R1 as follows: xRy
if x, y ≤ 1

2
and x ≥ y or if x, y > 1

2
and x ≤ y or if x > 1

2
and y ≤ 1

2
.

The set M(R,X) is empty.

To see this note that no element of [0, 1
2
] can be in M(R,X) as

any element of (1
2
, 1] is weakly preferred. However, elements of (1

2
, 1]

cannot be part ofM(R,X) for reasons identical to that of the previous
example. Here the problem is not with X — it is a closed interval as
we required to make the first example work. Instead, the problem is
with R. It jumps around at 1

2
. Outcomes slightly less than or equal

1
2
are among the least preferred while those slightly greater are among

the most preferred. It is this “discontinuity” in preferences that leads
to the empty maximal set in the example.
Before turning these examples and intuitions into general axioms,

we need to review a few mathematical concepts.3 We begin with the
assumption that preferences are defined on n-dimensional Euclidean
space, and consider choice from subsets, X ⊂ Rn. A point in such
a space can be written as a vector x = (x1, x2, ...., xn) where each
coordinate xi is a point in R1.
One of our main concerns is whether the set X is open or closed.

These concepts can be grasped with the simplest example of R1. In
this case a set A ⊂ X is termed open if for every point x ∈ A there
is some ε > 0 such that for any y ∈ X satisfying |x− y| < ε it is the
case that y ∈ A. Therefore, a set is open if given any point in the
set, all the points close to it are also in the set. Clearly, the set (0, 1)
is open. For each point in the set, there are some points higher and
some points lower which are also in the set. Thus, for any point x,
we can choose ε so that x − ε and x + ε are also in the set. We say
that a set is closed if its complement is open. Therefore, since (0, 1) is
open, (−∞, 0]∪ [1,∞) is closed. Intervals such as [0, 1] are also closed.
Some sets may be neither open or closed such as [0, 1).

3More precisely we need a few Topological concepts. Students interested in
further study of choice theory would be well served examining the mathematical
appendix to this book or better, yet, a text on Real Analysis. An approach-
able introductory text is: Gaughan, Edward. 1993. Introduction to Analysis, 4ed.
Brooks/Cole Publishing Company. A more complete text is: Kolmogorov, A.N.
and S.V. Fomin. 1970. Inroductory Real Analysis. Dover.
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To generalize these concepts to the n-dimensional Euclidean space,
we begin with a measure of distance call the norm.

kx− yk =

vuut nX
i=1

(xi − yi)2.

The quantity kx− yk is the distance between points x and y and gener-
alizes the absolute value used in R1. Given this definition of distance,
we can generalize the notion of an interval into that of a “ball.”

Definition 2.6. An open ball of radius ε > 0 and center x ∈ X ,
is denoted B(x, ε) = {y ∈ X : kx− yk < ε}.
Now it is easy to generalize the concept of openness. A set is open

if the set contains an open ball around each point for some ε > 0.

Definition 2.7. A set A ⊂ Rn is open if for every x ∈ A there is
some ε > 0 such that B(x, ε) ⊂ A.

Just as before, a set closed if its complement is open. Thus, closed
sets have the property that some points are on the boundary so that
there does not exist an open ball that does not contain points outside
the set.

Definition 2.8. A set A ⊂ Rn is closed if its complement B =
Rn\A is an open set.

Recall our first example. Since X is an open set, for each x in
X there is an open ball around x that is also in X. Since each of
these balls contain points weakly preferred to X, no maximal set can
exist. However, if X = [0, 1], any open ball around 1 contains points
outside of X. Since all of the points preferred to 1 lie outside of [0, 1],
M(≥, [0, 1]) = 1. However, note that closedness itself is not sufficient.
Recall that (−∞, 0]∪ [1,∞) is a closed set, butM(≥, (−∞, 0]∪ [1,∞))
is empty. The problem of course is that there is no upper bound on
this set, so for any x there is a y > x so that yRx. Thus, another
important condition is boundedness.

Definition 2.9. A set A ⊂ Rn is bounded if there exists a finite
number b such that for every x ∈ A it is the case that kx− 0k < b
where 0 is the vector (0, ..., 0).

The set (−∞, 0] ∪ [1,∞) clearly fails this criteria so we can rule
it out by requiring that choice sets be bounded. It is easy to see in
example 1 so long as X is closed and bounded M(≥,X) is non-empty.
In Rn, we call sets that are both closed and bounded compact.
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Definition 2.10. A set A ⊂ Rn is compact if it is closed and
bounded.

Since all examples or problems and problems in this book will deal
with subsets of Euclidean spaces, we could stop here. However, in
arbitrary spaces, the equivalence between compactness and closed and
bounded does not hold. It turns out that the proof of our main result
is easier if we consider a more general definition of compactness (even
though we lose some of the intuition of our examples). The more
general definition of compactness is based on sets known as open covers.
An open cover for a set A is a collection of open sets whose union
contains A.

Definition 2.11. Given a set A, an open covering of A is a collec-
tion of sets {Oθ}θ∈Θ where Θ is an arbitrary index set and Oθ is open
for every θ ∈ Θ such that A ⊂ {∪θ∈ΘOθ} (in other words if x ∈ A then
there is some θ ∈ Θ such that x ∈ Oθ).

Given this definition, we say that A has a finite sub-cover if from
every open cover we can select just a finite number of the open sets and
be assured that A is covered by this finite collection. The existence of
such a sub-covering is equivalent to the compactness of A.

Definition 2.12. A set A is compact if for any open covering{Oθ}θ∈Θ
of A there exists some finite set B ⊂ Θ, such that the finite covering{Oθ}θ∈B
is a covering of A i.e. A ⊂ ∪θ∈BOθ.

Since the previous two definitions are subtle for those not familiar
with analysis an example is warranted. Consider the space R1 and two
subsets [0, 1] and (0, 1). We already know that (0, 1) is not compact, as
it is not closed and we have concluded that in Euclidean space compact
sets are closed and bounded. To demonstrate that (0, 1) is not compact
using the open covering definition, consider the following open covering
of (0, 1). For each θ ∈ Θ = {3, 4, 5, .......}, let Oθ = (

1
θ
, 1− 1

θ
). This

is a collection of open intervals centered at 1
2
, and the width of the

intervals approaches 1 as θ gets big. Is {Oθ}θ∈Θ and open covering of
(0, 1)? Yes, for any element in x ∈ (0, 1) you can pick a θ big enough
so that x ∈ Oθ. So we have constructed an open covering of (0, 1).
Now our definition of compactness says that if (0, 1) is compact we
need to be able to find a finite subset B ⊂ {3, 4, 5, .......} and show that
(0, 1) ⊂ ∪θ∈BOθ. But for a finite set B, there is a finite largest element
θ∗ ∈ B.4 This means that the value 1

θ∗ is strictly larger than 0 and

4You could actually prove this sentence by noting that ≥ is a weak ordering
and applying our result about the non-emptyness of the maximal set for finite sets.
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since (0, 1) contains points arbitrarily close to 0, 1
θ∗ is strictly larger

than some element of (0, 1). Accordingly for any finite collection of
subsets in the open covering (i.e. selection of B that is finite), we can
find an element of (0, 1) that is not contained in any set Oθ for θ ∈ B.
Thus we have applied the open-covering definition to show what we
already knew, (0, 1) is not compact. The interested reader should
try to proceed in the other direction, showing that [0, 1] is compact
according to the open-covering definition.5

Having elucidated properties thatX can satisfy (e.g. compactness),
we turn to the properties that we would like to R to satisfy. Not sur-
prisingly, given example 2, we want R to be “continuous” in a specific
way. To define continuity, we use the concept of the upper contour
set.6 Given a binary relation R on Rn the strict upper contour set of a
point x ∈ Rn is P (x) ≡ {y ∈ Rn : yPx}. The strict lower contour set of
point x is the set P−1(x) ≡ {y ∈ Rn : xPy}. So the upper contour set
of x contains the points that are preferred to x and the lower contour
set of x contains the points that x is preferred to. Similarly, the level
set of x is the set of points for which the agent is indifferent to x or
I(x) ≡ {y ∈ Rn : yRx and xRy}.

Definition 2.13. A binary relation R on Rn is
(i) upper continuous if for all x ∈ Rn, P (x) is open
(ii) lower continuous if for all x ∈ Rn, P−1(x) is open
(iii) continuous if is both lower and upper continuous.

Consider the implications of these conditions. When preferences
are complete, any point y that is very close to x is either in P (x),
P−1(x), or I(x). When preferences are continuous, y ∈ P (x) or y ∈
P−1(x) implies that points sufficiently close to y will also be in the
respective set. To see how continuity rules out anomalous behavior,
recall example 2. There P−1(1

2
+ ε) = (−∞, 1

2
]∪ (1

2
+ ε, 1] which is not

an open set. Thus, the jump in preferences exhibited in the second
example is ruled out when preferences are lower continuous.
We can now state the sufficient conditions for a non-empty maximal

set.

5We direct the reader to the famed Heine-Borel theorem in any of the cited
texts on Real-analysis which relates the topological open-covering and Euclidean
closed-and bounded definitions of compactness for Rn. Gaughan (1993) presents a
particularly detailed proof of the result for R1.

6In political science, the upper contour set is often referred to as the “preferred
to set”. Keith Krehbiel has pointed out to both authors on numerous occassions
that this terminology (along with many others) contains a redundancy. Thus, he
and we implore all readers to use our preferred “preferred set.”
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Theorem 2.3. If X ⊂ Rn is non-empty and compact, and R on Rn

is complete, reflexive, transitive and lower continuous, thenM(R,X) 6=
∅

The proof of this result is more technical than most other sections
of this book. The result also holds on for arbitrary topological spaces.
This allows us to apply it to choice problems in which x is a infinite
sequence of outcomes, a function, or a probability distribution.

Proof. Assume that X is non-empty and compact, and R on X
is complete, reflexive, transitive and lower continuous. To establish
a contradiction, assume that M(R,X) = ∅. Thus, every point in X
is contained in P−1(α) for some α ∈ X. Since R is lower continuous
every such P−1(α) is open. This means that {P−1(α)}α∈X is an open
covering of X. Since X is compact, there exists a finite set of points
B ⊂ X for which the collection {P−1(α)}α∈B is also a covering of
X. That is if x ∈ X then x ∈ P−1(α) for some α ∈ B. But we
know from a previous result that M(R,B) 6= ∅, since B is finite and
R is complete, reflexive and transitive. Thus a point x∗ ∈ M(R,B)
exists. Now consider any arbitrary point y ∈ X. Either y is an
element of M(R,B) or it is not. By definition, if y ∈ M(R,B) then
x∗Ry. If y /∈ M(R,B) since {P−1(α)}α∈B covers X there is some
α ∈ B such that y ∈ P−1(α). This means that αRy. However,
since x∗ ∈ M(R,B) we know that x∗Rα. Since R is transitive on
X, this implies that x∗Ry. Thus, we have shown that for all y ∈ X,
x∗Ry. This means that x∗ ∈ M(R,X), contradicting the assumption
and establishing the non-emptiness of M(R,X).¥ ¤

It is important to note that the theorem only establishes sufficient,
not necessary conditions, for a non-empty maximal set. In particu-
lar, we will encounter situations where X is either unbounded or not
closed and R is discontinuous. In each of these possibilities, the non-
emptiness ofM(R,X) has to be established by other means. Violations
of the compactness of X will generally require stronger assumptions
about R while violations of continuity will require more structure on
X.

2.2. Uniqueness of M(R,X). Since we develop choice models
to make predictions about behavior, it is certainly preferable that the
model produce a single prediction, rather than a range of possible out-
comes. Thus, it is valuable to know whether or not M(R,X) has a
unique element or whether a larger set of choices is consistent with
rational behavior.
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When the choice set is finite, we can typically only guarantee a
unique element ofM(R,X) by assuming that all preferences are strict.
Without indifference and a finite choice set, M(R,X) must have only
a single element if it exists.
When the choice space is not finite, we can impose sufficient struc-

ture to insure that M(R,X) has only one element. We will need one
condition on X and one condition on R to attain this result. The first
condition is that X be a convex set. This assumption requires that if
x and y are in X certain combinations of x and y must also be in X.

Definition 2.14. X ⊂ Rn is convex if for any x, y ∈ X and the
point λx+ (1− λ)y is in X for every λ ∈ [0, 1].
The point λx+ (1− λ)y is often called the convex combination (or

a weighted average) of x and y. As an example the set [0, 1] is convex
because for any two points in the set, any point in between these two
points is also in the set. Alternatively, X = [0, 1

4
] ∪
£
3
4
, 0
¤
is not since

1
4
λ + 3

4
(1− λ) /∈ X for any λ ∈ (0, 1). Thus, convexity requires that

there are no “holes” in the outcome set. When the outcome has more
than dimension, convexity also requires that its surface not have any
appendages. Think about your hand. Convex combinations of points
on your thumb and index finger are not part of it.7

We will see that an important property is that preferences be convex
as well.

Definition 2.15. Preference R on the convex set X is strictly con-
vex if for any distinct points x, y ∈ X if xRy then [λx+ (1− λ)y]Py
for any λ ∈ (0, 1).
Essentially, convex preferences have the property that if the agent

prefers x to y she should also prefers convex combinations of x and y
to y. Strict convexity goes a step further. Even if the agent is only
indifferent between x and y, she should still prefer the convex combina-
tion to either x or y. We leave as an exercise that the strict convexity
of R implies that the lower contour sets P−1(x) are convex. Since the
lower contour sets are convex, they cannot have holes, appendages, or
flat spots.
The following result is easy to establish.

Theorem 2.4. If X is convex and R on X is strictly convex, then
if M(R,X) is non-empty, it contains a single element.

Proof. By way of a contradiction assume that X is convex, R
is strictly convex, and two distinct policies x, y are both in M(R,X).

7Game theorists spend a lot of time contemplating such ironies.
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For arbitrary λ ∈ (0, 1) the point [λx+ (1− λ)y] is in X since X is
convex. But since R is strictly convex, [λx+ (1− λ)y]Py. But this
contradicts the assumptions that y ∈ M(R,X). Thus the result is
established.¥ ¤

The importance of the last two theorems is clear. When the choice
set is compact and a weak order is lower continuous, a “rational” choice
exists. When the choice set is convex and the preference ordering is
strictly convex, any optimal choice is unique.

3. Utility Theory

So far our model of choice and rationality is based on the use of
binary preferences and the maximal set. However, binary operators
are hard to work with except in the most trivial models. Numbers
on the other hand are easy to work with. So if we can associate a
number with each element of the outcome set, then we can just use
the ≥ operator to compare alternatives. In this section we explore
the conditions under which it is possible to represent outcome sets as
sets of real numbers so that we can use ≥ as the preference operator.
In other words, we would like to represent preferences using a utility
function (a real valued function with domain X) such that

u(x) ≥ u(y) implies xRy

u(x) > u(y) implies xPy

u(x) = u(y) implies xIy

The idea of utility has been the subject of numerous philosophical and
moral debates over the past 300 years, but again we will use a narrow
definition. Utilities simply numerical representations of preferences for
which ≥ is the appropriate preference operator — we imbue them with
no additional normative content.
At our current level of generality, utility functions are ordinal as

they are used only to rank alternatives. In particular, they are not
used to tell is how much something is preferred to something else. The
value u(x) − u(y) has no meaning, because any function w such that
w(x) ≥ w(y) if and only if u(x) ≥ u(y) represents exactly the same
preferences as u. This indicates that comparing utilities across agents
is generally not a meaningful exercise. However, as we discuss in the
next chapter, the standard model of choice under uncertainty presumes
that utility functions contain more than simple ordinal information.
The following is a formal definition of a utility function.
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Definition 2.16. Given X and R on X we say the utility function
u : X → R1 represents R if for all x, y ∈ X u(x) ≥ u(y) iff xRy.

From this definition it is quite easy to show that u(x) > u(y) if
and only if xPy and u(x) = u(y) if and only xIy. When X is finite
the existence of a utility representation of R hinges only on R being
complete, reflexive,and transitive.
Just as we did in the last section, we wish to characterize the agent’s

optimal choice. Let x be a maximizer of u : X → R1 if u(x) ≥ u(y)
for all y ∈ X. As the next result shows the existence of a maximizer
and the non-emptiness of M(R,X) are equivalent.

Theorem 2.5. If the function u(·) is a utility representation of R
on X then M(R,X) = argmaxx∈X{u(x)}.
Proof. To show that M(R,X) ⊂ argmaxx∈X{u(x)}, assume that

u(·) represents R on X and that x0 ∈M(R,X). The latter assumption
implies that x0Ry for all y ∈ X. This and the former assumption imply
that u(x0) ≥ u(y) for all y ∈ X. Thus x ∈ argmaxx∈X{u(x)}. To show
that argmaxx∈X{u(x)} ⊂ M(R,X) assume that u(·) represents R on
X and that x0 ∈ argmaxx∈X{u(x)}. The latter assumption implies
that u(x0) ≥ u(y) for all y ∈ X. This and the former assumption
imply that x0Ry for all y ∈ X. Thus x ∈M(R,X).¥ ¤
If X is finite and R is complete, reflexive and transitive, we know

that M(R,X) is non-empty (by theorem 1), thus a maximizer of u(x)
must exist. However, if X is not finite, further conditions on X and
the function are needed to ensure the existence of maximizers. In
the next advanced section we consider utility functions on non-finite
outcome spaces.

4. Utility representations on Continuous Outcome Spaces*

We now review some basic properties of functions. The first desir-
able property of utility functions is continuity.

Definition 2.17. We say a function f : X → R1 is continuous
if for every x ∈ X the following is true: For every ε > 0 there exists
some δ > 0 such that if kx− yk < δ |f(x)− f(y)| < ε.

As is often taught to high school students, a continuous function
is one that you can draw without lifting the pencil. Substantively,
a continuous utility function is one that produces close utilities for
outcomes that are close together.
The following sufficient conditions on preferences ensure that a con-

tinuous utility representation exists.
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Theorem 2.6. (Debreu 1959) If X ⊂ Rn and R is complete, re-
flexive, transitive, and continuous, then there exists a continuous utility
function u : X → R1 that represents R.

Wewill not undertake the proof of this claim. However the converse
is not difficult to establish which we leave as an exercise. A result
analogous to Theorem 2.3 is the following.

Theorem 2.7. If X ⊂ Rn is compact and u : X → R1 is continuous
then a maximizer exists.

This result is sometimes known as theWeierstrass Theorem. We do
not prove the result here (see Royden for a proof), since Theorem 2.3 is
actually a result showing that only lower continuity and compactness
are needed.
As we pointed out earlier, utility functions are arbitrary. Some

texts call this an ordinal notion of utility as opposed to a cardinal
notion of utility. There is nothing interesting about the particular
value of a utility function at a specific point x ∈ X. All that matters
is the ordering of u(x) and u(y) for any two x, y ∈ X. We say that
f : R1 → R1 is a strictly increasing function if for all x, y ∈ X x > y
implies that f(x) > f(y). Utility functions are defined only up to a
strictly increasing transformation. This means that if u : X → R1
represents R on X then f ◦ u : X → R1 represents R on X where
f ◦ u : X → R1 is represents f(u(x)). Thus, scaling a utility function
is of no consequence.
Thus, far we have not established any results that allow us to find

the maximizer of a utility function. Fortunately, if we assume that
utility functions are differentiable, the tools of calculus will allow us to
characterize optimal choices. The mathematical appendix reviews key
results from calculus.

5. Spatial Preferences

In most applications in economics, outcomes spaces are denomi-
nated in money (incomes, wealths, wages, profits etc.) or commodities
(widgets, gizmos, chili burritos). It is sensible to assume that larger
outcomes are preferred to smaller outcomes (except perhaps in the case
of chili burritos). In other words, many of the preferences considered
in economics are non-satiable in that agents either believe more is al-
ways better (i.e. money) or less is always better (air pollution). In
political game theory, however, many of the outcomes we wish to study
are policies such as taxes, welfare benefits, abortion restrictions where
at least some agents have a most preferred outcome that is neither zero
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or infinite. A voter’s utility may be increasing in tax rates below some
level and decreasing for higher levels. A voter may prefer restrictions
on abortion only so stringent as outlawing them in third trimester but
not more so. Thus, it often necessary to assume that political actors
have satiable preferences. Formally, we can say an agent has such
preferences when M(X,R) contains elements that are interior to the
outcome space X. Similarly, preferences are satiable when the maxi-
mizer of u : X → R is in the interior of X. Figure 2.1 illustrates the
differences between satiable and non-satiable preferences.

Insert Figure 2.1 Here
The most common application of satiable preferences is the spatial

model where it is assumed that policy outcomes can be represented
as points lying in a subset of Rd. In principal, one could specify very
general preferences over this space, but in practice (and the remainder
of this book) it is generally assumed that voters have single-peaked
and symmetric preferences. We will discuss single peakedness in more
detail in the chapter on social choice, but for now we will simply note
that it implies that the agent’s maximal set has a single element and
that the utility function has a single maximizer. This most preferred
policy outcome is known as the agent’s ideal point. The assumption
of symmetry requires that the agent’s utility declines at the same rate
regardless of direction. This implies that preferences are a decreasing
function of the distance between the policy outcome and the agent’s
ideal point.
If we assume that the policy space is one-dimensional, single-peaked,

symmetric preferences are represented by utility functions of the form
ui(x) = h(− |x− zi|) where zi is agent i’s ideal point and h : R1 → R1
is an increasing function. The two most popular examples are the lin-
ear, ui(x) = − |x− zi| and quadratic utility functions ui(x) = −(x −
zi)

2.These functions are plotted in Figure 2.2.
Insert Figure 2.2 Here

In higher dimensional applications X ⊂ Rd distances are measured
Euclidean norm defined as

kx− yk =

vuut nX
j=1

¡
xj − zji

¢2
.

Thus, symmetric, single-peaked preferences take the form of

ui(x) = h(− kx− zik)
where again, zi ∈ Rd is the ideal point of agent i, h : R1 → R1 is an
increasing function.



6. EXERCISES 21

It is difficult to visualize utility functions over multidimensional
spaces. However, for 2 dimensions graphical analysis is simplified by
the fact that each agent’s preferred sets i.e. P (y) = {x ∈ X|xRy} form
circular regions centered on the agent’s ideal point. Similarly, the set
of points for which the agent is indifferent to y is a circle containing y
centered on the ideal point. These sets are illustrated in Figure 2.3.
For any indifference curve, an agent prefers an outcome inside the circle
to any that lies outside it.

Insert Figure 2.3 Here
One of the reason that single-peaked, symmetric are so popular in

applied political game theoretic models is the ease at which the pre-
dicted choices of agents can be characterized. As long as one is willing
to make the appropriate assumptions, choice over a pair of outcomes
can be characterized by an agent’s ideal point and a “cutpoint” in R1
or a “cutting plane” in Rd.
To see this, consider an agent with symmetric single peaked prefer-

ences over R1. Thus, agent i prefers x to y if and only if h(− |x− zi|) >
h(− |y − zi|). Assuming that x > y, this condition becomes

zi > c ≡ x+ y

2

Conversely, yPx if and only if zi < c. Thus, given a set of agents
and outcomes x > y, the model predicts that all agents with ideal
points greater than the midpoint of x and y prefer y and those with
ideal points lower than the midpoint prefer y. Note that this prediction
is completely independent of h.
This logic extends to Rd as well. Now agent i prefers x to y

if and only if h(− kx− zik) > h(− ky − zik). Now we can define a
separating hyperplane as follows. Let C = {c | kx− ck = ky − ck}.
This hyperplane is equivalent to the cutpoint in R1. It divides the
ideal points into those who prefer x to y and those who prefer y to
x. Again armed only with knowledge of ideal points and C, we can
confidently characterize the choices of the agents.

6. Exercises

Exercise 2.1. Prove the following: Assume X is finite and R is
a complete and reflexive binary relation on X. Then M(R,S) 6= ∅ on
any S ⊂ X (except S = ∅) iff R is acyclic.

Exercise 2.2 (*). Prove that R is strict convex if and only if its
lower contour sets P−1(x) are convex.
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Exercise 2.3 (*). Show that if X ⊂ Rn and the continuous utility
function u : X → R1 represents the binary ordering R on X then R is
complete, reflexive, transitive, and continuous.

Exercise 2.4 (*). Use theorem 3 to prove the Weierstrass theorem.

Exercise 2.5 (*). Use Definition 2.12 to show that [0, 1] is com-
pact.

Exercise 2.6. For the following utility functions, describe the pre-
ferred set. You may do this either graphically or by formally charac-
terizing P (x) = {y : yRx} for all x ∈ X. Plot the utility curve if
possible.

(1) u(x) = −|1− x| for x ∈ [0, 1]
(2) u(x) = −x2 for x ∈ [0, 1]
(3) u(x) =

√
x for x ∈ [0, 1]

(4) u(x) = −αx21 − (1− α)x22 for x ∈ R2

Exercise 2.7. Let x = (x1, x2) and y = (y1, y2) be two outcomes
from R2.

(1) Assuming that all agents have single-peaked and symmetric
preferences, compute the separating hyperplane H as a func-
tion of x1, x2, y1, and y2. Verify that it is a straight line.

(2) Assume that each agent has non-symmetric preferences given
by −α (x1 − z1i )

2 − (1− α) (x2 − z2i )
2 for x ∈ R2. What does

C = {c |α (x1 − c1)
2
+ (1− α) (x2 − c2)

2
= α (y1 − c1)

2
+ (1−

α) (y2 − c2)
2} look like now? Does it divide the ideal points

of agents who prefer x to y from those who prefer y to x?

Exercise 2.8. Assume that an agent has spatial preferences R over
Rd represented by the utility function ui(x) = h(− kx− zik). Prove
that for any X ⊂ Rd, M(R,X) is non-empty if zi is finite. Show that
as long as X is convex, M(R,X) has a unique element.



CHAPTER 3

Choice Under Uncertainty

In this chapter we drop the assumption that individuals can per-
fectly predict the consequences of their actions. Instead we assume
that outcomes arise probabilistically from the choice of actions i.e. that
certain actions increase or decrease the likelihood of particular out-
comes. Further, individuals are assumed to know which actions are
most likely to produce which sorts of outcomes. Recall the example
from the last chapter where A = {send in the troops, try negotiating,
do nothing} and X = {win major concessions, win minor concessions,
status quo}. The agent may believe that major concessions are more
likely when the troops are deployed than when negotiation is initiated.
Thus, she would have to trade off this likelihood of generating a better
outcome against her costs of taking each action. Deploying the troops
would be rational if it is much more likely to lead to major concessions,
the additional concessions are valuable to the agent, or if the costs of
deployment are low. These are the basic trade-offs underlying the
classical theory of choice under uncertainty.
There are two key elements of this approach. The first is the

concept of beliefs which are modeled as probability distributions or
“lotteries” over the outcomes associated with each action. The second
is the specification of payoffs associated with each outcome. These
payoffs are known as von Neumann-Morgenstern utility functions in
honor of two of the pioneers of classical decision theory. As we shall
see, the von Neumann-Morgenstern functions rely on a much stronger
concept of utility than the ordinal functions discussed in chapter 2.

1. The Finite Case

Our presentation begins with the case of finite numbers of actions
and outcomes. As in the previous chapter, we denote the feasible
actions and outcomes as sets A = {a1, ..., aI} and X = {x1, ..., xJ}.
However, we now assume that actions and outcomes are linked proba-
bilistically. To formalize this assumption, we assume that the outcome
depends both on the action taken and the “state of the world”, s. From
the point of view of the agent, s is a random variable like rainfall on

23
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election day or missile precision in a war. In decision-theoretic models
(or in game theoretic models in which agents choose actions randomly),
it can also represent the actions of other agents. We denote the set of
states as S = {s1, ..., sK} . We assume that agents have beliefs about
the likelihood of each of state represented by the probability function
π (sk) ≡ πk. These probabilities have to satisfy the basic axioms of
probability theory — they have to be between zero and one, inclusive,
and they must sum to one. Formally, we require

0 ≤ πk ≤ 1

π1 + π2 + ...+ πk =
KX
k=1

πk = 1

Given this setup, we can formalize the linkage between actions, states,
and outcomes with an outcome function defined as χ (a, s) : A× S →
X.1 As an example, consider Table 1 which specifies an outcome for
each combination of states and actions:

Table 3.1
A\S s1 s2 s3
a1 x1 x1 x2
a2 x1 x2 x3

In this example, outcome x1 occurs in state s1 regardless of action.
In states s2 and s3, the outcome depends on the action chosen by
the agent. From the agent’s perspective, however, it is not the state
that matters so much as the likelihood of getting particular outcomes
following each action. Since the agent does not know the state when
she chooses ai, the probability of receiving outcome x is the probability
that the state takes on a value s such that χ (ai, s) = x. We let pij be
the probability that outcome xj occurs following action ai.
Note that we can easily compute these probabilities from Table 1:

p11 = π1 + π2, p12 = π3, p13 = 0, p21 = π1, p22 = π2, and p23 = π3.
Thus, the general formula for these probabilities is

pij =
X

{k:χ(ai,sk)=xj}

πk.

1Because we only focus on outcomes that can occur for some combination of
a and s, we require that the total number of action-state combinations be no less
than the number of outcomes or I ·K ≥ J.
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The probabilities pij inherit the following properties from the πk:

0 ≤ pij ≤ 1

pi1 + pi2 + ...+ piJ =
JX

j=1

pij = 1 for each i.

In the remainder of this chapter, we simplify the notation by suppress-
ing the dependence of the outcome probabilities on s to focus solely on
pij. However, in later chapters, we will use the action/state represen-
tation of the agent’s problem more explicitly.
Also to keep notational clutter to a minimum, we define the vec-

tor pi = (pi1, . . . , piJ) and refer it as the lottery over the outcomes
associated with action ai. Because of the correspondence between the
action and the lottery it generates, we will refer interchangeably to an
agent choosing an action ai or simply choosing the lottery pi. Finally,
let P be the set of all lotteries. Given that there are J possible out-
comes, the set P consists of the set of vectors of length J that satisfy
the above conditions (each element is between 0 and 1, and all coordi-
nates sum to 1). This set is sometimes denoted ∆J and termed the J
dimensional simplex.2 For two dimensions, the simplex is simply the
straight line from coordinate (0, 1) to (1, 0) as in Figure 3.1. For three
dimensions, it is the triangular segment of the plane through (1, 0, 0),
(0, 1, 0) , and (0, 0, 1) as in the lower panel of Figure 3.11.

Insert Figure 3.1 Here
Another easy way to visualize lotteries is to model them as trees

as in Figure 3.2. Beginning from the initial node, each branch cor-
responds to a particular outcome and is labeled with the probability
of that outcome. Thus, we can see that lottery p generates a larger
probability of x1 and a lower probability of x3 than the lottery q, while
both lotteries generate the same probability of x2. To build some intu-
ition for what follows, consider how an agent might choose between an
action that generated p and one that generated q. First, it would seem
unreasonable for the agent to base her decision on her preferences for
x2 since both lotteries generate this outcome with identical probabili-
ties. Since the difference between the lotteries is the relative likelihood
of x1 and x3, it would also seem that a rational agent would choose p
only if x1Rx3. Thus, using these two intuitive arguments (which we
will formalize shortly), we can speculate that the agent would choose
p if x1Px3, q if x3Px1, and either lottery if x1Ix3.

2We refer those readers who are unfamiliar with vectors and coordinate systems
to the mathematical appendix.
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Insert Figure 3.2 Here

One feature of the preceding example that facilitated our intuitive
prediction is that the lotteries involved are simple in the sense that each
outcome is associated with a single probability number. However, it is
often necessary to consider more complicated situations where agents
must choose between lotteries over lotteries over lotteries.... Such situ-
ations are known as compound lotteries. We can formalize this notion
by defining a compound lottery over P by {α1, ..., αI} where αi rep-
resents the probability of playing lottery pi. As an example, consider
how an agent might evaluate a lottery in which the agent gets to play
p with probability 1

4
and q with probability 3

4
. We’ll call this lottery

r =1
4
p+3

4
q. Its tree representation is given in Figure 3.3. How should

an agent choose between p,q, and r? First, note that the availabil-
ity of r should not change the preference ranking between p and q
so we need only consider comparisons of r versus p and r versus q.
However, these comparisons would seem to be difficult because of r’s
compound structure. Fortunately, preferences over r are easy to an-
alyze. We assume that our agents only care about the probabilities
associated with each outcome, not the paths travelled to reach those
outcomes. Thus, the agent can compute that the probability of re-
ceiving outcome x1 is the probability of receiving lottery p

¡
1
4

¢
times

1
3
plus the probability of receiving q

¡
3
4

¢
times 1

4
. The probabilities of

x2 and x3 can be computed similarly. Since the agent can compute
a single probability number for each outcome, r can be represented as
a simple lottery as in the second panel of Figure 3.3. Formally, any
compound lottery {α1, ..., αI} over P can be represented as a simple

lottery with the probability of xj given by
XI

i=1
αipij.

Insert Figure 3.3 Here

Given the reduction of r to a simple lottery, can we know say which
lottery the agent will prefer? Note that in the reduction of r, the
probability of x2 is again 1

2
as it is in p and q. So preferences over

x2 are again irrelevant and only the comparison of x1 to x3 matters.
Since under r the outcome x1 is more likely than x3, any agent for
whom x1Px3 will prefer r over q. However, it also seems intuitive that
such an agent would also prefer p to r since x1 is somewhat more likely
under p.
This discussion of how an agent with preferences over the outcomes

X might evaluate different lotteries demonstrates the key features of
the theory of choice under uncertainty is standard in classical decision-
theory and non-cooperative game theory. Our goal is to formalize
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a notion of weak preferences on P that allows us to deal with more
complicated problems involving choice under uncertainty. Just as util-
ity functions greatly simply the analysis of choice under certainty, the
concept of expected utility will simplify the analysis of choice under
uncertainty. Now we are in a position to formalize some of the intu-
ition in the previous example. All of the intuition can be succinctly
summarized into four axioms about weak preferences R on P.

Axiom 3.1. Completeness and Transitivity: The weak prefer-
ence relation R over P is complete and transitive.

Axiom 3.2. Reduction of Compound Lotteries: For any α ∈
[0, 1] and p ∈ P, pI [αp+(1− α)p] .

Axiom 3.3. Continuity: Let p, q and r be three lotteries in P.
The set of scalers α ∈ [0, 1] such that [αp+ (1− α) r]Rq is a closed
interval and the set of scalers β ∈ [0, 1] such that qR [βp+ (1− β) r]
is also a closed interval.3

Axiom 3.4. Independence: Let p, q and r be three lotteries in P.
For any scalar α ∈ (0, 1) , pRq if and only if [αp+ (1− α) r]R [αq+ (1− α) r].

The substantive meaning of each of the axioms is pretty straightfor-
ward. First, we have to assume, just as in the case of outcomes, that
any two lotteries can be compared and that preferences over lotteries
do not cycle. This axiom is critical in our example as the predictions
assume that the agent has well-behaved preferences over x1, x2, and
x3. As in the last chapter, transitivity can be extended to indifference
and strict preference. The second axiom simply formalizes Figure 3.3
and guarantees that agents care only about the probabilities of the
outcomes, and not the particular manner in which the probabilistic
process of reaching those outcomes is represented.4

The 3.3 axiom is somewhat abstract but implies that small changes
in the probabilities of outcomes should not lead to large changes in the
preferences over lotteries. It requires that if pPq then all lotteries
sufficiently close to p should also be preferred to q. If pPq, a modifi-
cation of p that adds a very small probability of a really bad outcome
will not reverse the preference ordering. The continuity axiom has the
following straightforward useful implication.

3The mathematical appendix has a detailed discussion of closed sets. For the
present purposes, however, it is sufficient to know that a closed interval [a, b] is one
that includes points a and b and all points in between.

4In some texts this assumption is implicit when authors define prefrences over
lotteries. We choose to make the assumption explicit to highlight that this theory
ignores details regarding the representation of lotteries.
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Lemma 3.1. If pRqRr then there exists some λ ∈ [0, 1] such that
[λp+ (1− λ) r] Iq.

Proof. Assume that pRqRr and that for any λ ∈ [0, 1], we have
either [λp+ (1− λ) r]Pq or qP [λp+ (1− λ) r]. If pIq or rIq, we
obtain a contradiction at α = 1 or α = 0 so we must have pPqPr. This
implies that the sets {α : [αp+ (1− α) r]Rq} and {β : qR [βp+ (1− β) r] }
are non-empty. By the continuity axiom, these sets are closed. This
means that the first set contains a smallest element α and the second
set contains a largest element, β. Since the strict preference is not
reflexive, we cannot have [λp+ (1− λ) r]Pq and qP [λp+ (1− λ) r]
for any particular value of λ. Thus we must have β < α. But then at
λ ∈ (β, α) we have neither [λp+ (1− λ) r]Pq nor qP [λp+ (1− λ) r]
contradicting the original hypothesis. ¤
Finally, consider the independence axiom which is perhaps the most

controversial.5 Suppose we have a preference ranking between two
lotteries. If we mix each of those lotteries with a third (using the
same probabilities), the independence axiom holds that the preference
ordering will be the same as those over the original lotteries. As an
example, consider two lotteries. The first pays $100 with probability
.5 and $0 otherwise. The second pay $75 for sure. If we compound
each of these lotteries with a .5 chance of $1,000,000 for sure and .5
chance of playing the original lottery, the independence axiom says
that the preferences over the compound lotteries should correspond to
the original lotteries. Using the “tree” metaphor for lotteries, the
independence axiom says that the comparison of two lotteries is based
only on the comparison of the outcome branches that are distinct across
lotteries. Thus, this axiom formalizes the intuition behind ignoring x2
in our first example. The independence axiom is easy to extend to the
case of indifference and strict preference.

Lemma 3.2. For any scalar α ∈ (0, 1) , pIq if and only if

[αp+ (1− α) r] I [αq+ (1− α) r] .

Proof. To show sufficiency, suppose that pIq. Then the inde-
pendence axiom requires both [αp+ (1− α) r]R [αq+ (1− α) r] and
[αq+ (1− α) r]R [αp+ (1− α) r] . Thus, [αp+ (1− α) r] I [αq+ (1− α) r]
is the only possibility. The proof of necessity is very similar. ¤
Lemma 3.3. For any scalar α ∈ (0, 1) , pPq if and only if
5In some texts and articles the independence axiom is called the substitution

axiom.
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[αp+ (1− α) r]P [αq+ (1− α) r].

Proof. To show sufficiency, suppose that pPq. Then the indepen-
dence axiom requires that [αp+ (1− α) r]R [αq+ (1− α) r]. To show
indifference is inconsistent, assume that [αq+ (1− α) r] I [αp+ (1− α) r].
By the previous lemma this implies that qIp, contradicting the assump-
tion that pPq. The proof of necessity is very similar. ¤

An equally important but less direct implication of the indepen-
dence axiom is the following lemma.

Lemma 3.4. If pRq and α ∈ (0, 1), then pR [αp+(1− α)q]Rq.

Proof. Since pPq, we can use the reduction of compound lotter-
ies, lemma 3, and transitivity to show that
pI [αp+(1− α)p]R [αp+(1− α)q]R [αq+(1− α)q] Iq. ¤

This lemma just establishes that if we take a weighted average of
two lotteries, the resulting lottery will have an intermediate preference
ranking. Finally, the independence and continuity axioms have the fol-
lowing implication which is crucial for the existence of expected utility
functions.

Lemma 3.5. Suppose the alternatives are indexed so that x1Rxj for
all j and xjRxJ for all j. Then for all α, β ∈ [0, 1] ,
[αx1 + (1− α)xJ ]R [βx1 + (1− β)xJ ] if and only if α ≥ β.

Proof. Suppose α ≥ β. We can then write αx1 + (1− α)xJ as
γx1 + (1− γ) [βx1 + (1− β)xJ ] where γ =

α−β
1−β ∈ (0, 1] . From lemma

4, x1R [βx1 + (1− β)xJ ]. Applying lemma 4 again,
[γx1 + (1− γ) [βx1 + (1− β)xJ ]]R [βx1 + (1− β) xJ ].
The proof of necessity is identical to above where the roles of α and

β are reversed. ¤

Sensibly when we compare lotteries over the best and worst out-
come, we prefer the one with the greatest likelihood of producing the
best outcome. With these axioms and lemma, we can now prove that
preferences over lotteries can be represented by expected utility func-
tions. We state the theorem in terms of preferences over lotteries.
Recall that actions induce lotteries over outcomes and so an analogous
statement can be made about preferences over actions.

Theorem 3.1. (von Neumann-Morgenstern) If axioms 3.1-3.4 hold,
then there exists a function u(xj) (which assigns a number uj for each
outcome) such that
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i) the expected utility of lottery pi (with is induced by action i ) is
given by

EU(pi) = pi1u1 + pi2u2 + . . .+ piJuJ =
JX

j=1

pijuj

ii) piRpj (i.e. aiRaj) if and only if EU(pi) ≥ EU(pj).

The function u(xj) is sometimes called a Bernoulli utility function,
to distinguish it from the expected utility function EU(p). It is im-
portant to note that we are talking about two different types of utility
functions. The Bernoulli, (or lower cased) functions are defined over
outcomes. The expected utility (capitalized) functions are defined over
lotteries. A subtle point, is that Theorem 1 starts with preferences
over lotteries that satisfy the four axioms and states that we can con-
struct an expected utility function over lotteries, that has a particular
form —the expected utility of a lottery is nothing more that the ex-
pected value of lottery given the values of the outcomes specified by
the Bernoulli utility functions.
The expected utility of a lottery is simply the average of the util-

ities over outcomes weighted by the probabilities of each outcome.
For example, if we assigned utilities to outcomes x1, x2, and x3 of
u (x1) , u (x2) , and u (x3), then the expected utility of lottery p would
be EU (p) = 1

3
u (x1) +

1
2
u (x2) +

1
6
u (x3) while that of q would be

EU (q) = 1
4
u (x1) +

1
2
u (x2) +

1
4
u (x3) . One of the most attractive

properties of expected utility functions is that they are linear in the
outcome utilities. Among other things this implies that EU (r) =
EU

¡
1
4
p+3

4
q
¢
= 1

4
EU (p) + 3

4
EU (q) = 13

48
u (x1) +

1
2
u (x2) +

11
48
u (x3)

which is exactly what one gets from computing the expected utility of
the reduced lottery.
We do not prove the von Neumann-Morgenstern theorem formally

in this section, but we can sketch it in the case of three outcomes.
The proof of the general result is very similar but uses mathemati-
cal induction to extend to an arbitrary number of alternatives. Let
X = {x1, x2, x3} where x1Rx2Rx3 and assume that at least one of
the preferences in strict — x1Ix2Ix3 is a trivial case. We will rep-
resent a lottery over X as a vector (p1, p2, p3). From Lemma 1, we
know that there exist α such that x2I(α, 0, 1−α). Similarly, we know
that x1I(1, 0, 0) and x3I(0, 0, 1) Therefore, let u1 = 1, u2 = α, and
u3 = 0. Now consider any lottery p = (p1, p2, p3). From this lottery,
we can form the compound lottery (p1 + u2p2, 0, p3 + p2 (1− u2)) by
substituting the lottery (u2, 0, 1− u2) for the degenerate lottery that
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reaches x2. Using Lemma 2, we know that the agent must be indif-
ferent between this compound lottery and p. Since we can make sim-
ilar substitutions for x1 and x2, the agent is indifferent between p and
{p1u1 + p2u2 + p3u3, 0, p1 (1− u1) + p2 (1− u2) + p3 (1− u3)}. Now con-
sider an alternative lottery q. By replicating the above arguments,
we know that the agent is indifferent between q and (q1u1 + q2u2 +
q3u3, 0, q1 (1− u1) + q2 (1− u2) + q3 (1− u3)).
For the grand finale, the application of Lemma 5 says that pRq if

and only if p1u1 + p2u2 + p3u3 ≥ q1u1 + q2u2 + q3u3. Thus, we can
represent preferences over lottery p by the scalar p1u1 + p2u2 + p3u3.
Note that the theorem does not say that any α ∈ [0, 1] will work.
Rather the theorem ensures that there exists at least one such α so
that the outcome utilities, u1 = 1, u2 = α and u3 = 0 will work.

1.1. Cardinal Utility. In the previous chapter, we assuaged utility-
skeptics with the argument “relax utility functions do nothing more
than represent preference orderings.” Once we move into the world of
expected utilities, however, such a defense is no longer tenable. The
utility functions over outcomes u(xj) are no longer simply ordinal, but
cardinal in that they contain information about relative preferences
over outcomes. Just as the Fahrenheit temperature scales ability to
say that the difference between 212◦ and 32◦ is twice the difference
between 122◦ and 32◦, cardinal utility functions allow us to say that
“my preference for steak over chicken is 3.8 times my preference for
chicken over fish.” Thus, unlike the case of ordinal utilities, the value
u(xj)− u(xk) has a meaningful interpretation.
It is easy to see why expected utility theory depends on cardinal

utility functions. Suppose that an agent were choosing between two
lotteries over the three outcomes x1, x2, x3 with x1Px2Px3. Lottery 1
provides a .5 shot at x1 and a .5 shot at x3 while lottery 2 gives x2 with
certainty. Suppose we had an expected utility representation u(x1) =
1, u(x2) = α ∈ (0, 1), and u(x3) = 0 which predicted that the agent
would choose lottery 1. If this representation were simply ordinal, we
could apply any order preserving transformation to the utility function,
and the resulting function would represent the exact same preferences.
But consider the following transformation of the utilities: v(x1) = 1,
v (x2) = 1 − α, and v(x3) = 0. This transformation preserves the
preference ordering, but now the agent would prefer lottery 2.
However, just as Fahrenheit is not the only temperature scale which

produces identical relative information about heat, expected utility rep-
resentations are not unique. To see this, consider two cardinal utility
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functions u(xj) and v(xj) = a+ bu(xj). Given a lottery p, these pro-
duce expected utility functions of

PJ
j=1 pju (xj) and a+b

PJ
j=1 pju (xj)

respectively. Since the ordering of
PJ

j=1 pju (xj) and
PJ

j=1 qju (xj) will

be the same as the ordering of a+b
PJ

j=1 pju (xj) and a+b
PJ

j=1 qju (xj)
as long as b > 0, each cardinal utility function produces exactly the
same behavior. This also implies that u(xj) − u(xk) is unique up to
a scale factor b while relative differences u(xj)−u(xk)

u(xl)−u(xm) are uniquely deter-
mined.

2. Risk Preferences

One aspect of choice under uncertainty that is not pinned down by
the axioms of the previous section is the set of risks that a rational
agent is willing to tolerate. Some agents may be willing to accept a
substantial probability of a bad outcome in exchange for moderately
higher probabilities of good outcomes, while others will seek to min-
imize the probability of bad outcomes by forgoing opportunities for
high payoffs. Recall, that the continuity axiom says that given three
outcomes xPyPz, an agent will prefer a lottery between x and z to a
certainty of y if the probability of z is sufficiently small. However, the
axiom is silent about how small this risk needs to be.
The way we characterize an agents’s preference or toleration of risk

is whether the agent is willing to accept a fair bet. A fair bet is one
that pays its stake (or price) in expectation. We will suppose for now
that the risky stakes and rewards (i.e. outcomes) are denominated in
money or some other commodity which agents tend to prefer more of.
In latter sections, we will extend these definitions to outcome spaces
where agent’s have satiable preferences. Letw be the stake and x1 > x2
be distinct monetary outcomes and p be the probability of x1 and 1−p
be the probability of x2. Then we have the following definitions:

Definition 3.1. A bet is fair if w = px1 + (1 − p)x2. A bet is
favorable if w < px1+(1− p)x2. A bet is unfair if w > px1+(1− p)x2

For example, a fair bet would be buying a $1 lottery ticket that
pays $100 with probability 1

100
and nothing with probability 99

100
The

bet would be favorable if the ticket cost less than a dollar and unfair
if it cost more. Needless to say, all lotteries that are called “lotteries”
in the real world (especially those run by state governments) are of
the unfair variety. Using the notion of fair bets, we can characterize
preferences for risk.
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Definition 3.2. An agent is risk adverse if she will not accept any
unfair bets, or u(px1 + (1− p)x2) > pu(x1) + (1− p)u(x2)

Definition 3.3. An agent is risk acceptant if she will accept some
unfair bet or u(px1 + (1− p)x2) < pu(x1) + (1− p)u(x2)

Definition 3.4. An agent is risk neutral if she is indifferent be-
tween any fair bet and its stake or u(px1 + (1− p)x2) = pu(x1) + (1−
p)u(x2)

It turns out that an agent’s preference for risk is closely related to
the shape of her utility function for money. Consider Figure 3.4 which
demonstrates the utility comparison for the fair bet w = px1 + (1 −
p)x2. Note that the line connecting the coordinates (u (x1) , x1) and
(u (x2) , x2) must travel through the point

(pu (x1) + (1− p)u (x2) , px1 + (1− p)x2) .

Thus, we know that the value of pu(x1) + (1 − p)u(x2) lies at the
intersection of the line between u(x1) and u(x2) and the vertical line
beginning at w. Thus, we can see that u (w) > pu(x1)+(1−p)u(x2) so
that the agent is risk adverse and rejects the fair bet. Obviously, the
property of the utility function responsible is the fact that the utility
function always lies above any line connecting two utilities. This is
the property of concavity.

Insert Figure 3.4 Here
In Figure 3.5, we can see that the utility function always lies below

lines connecting two utility values. For a convex utility function such
as this one, the agent will always accept the fair bet as pu(x1) + (1−
p)u(x2) > u(px1 + (1− p)x2). Figure 3.6 illustrates that linear utility
functions produce risk-neutral behavior as they imply that the expected
utility of a gamble is identical to the utility of the expected outcome.

Insert Figures 3.5 and 3.6 Here

2.1. Risk Preferences and Stochastic Dominance*. It is not
conceptually, difficult to extend these ideas to lotteries that assign pos-
itive probability to an arbitrary (finite) number of possible outcomes.

Definition 3.5. An agent (or its preference relation) exhibits risk
aversion if for any non deterministic lottery p, u(

P
j pjxj) >

P
j pju(xj).

Definition 3.6. An agent (or its preference relation) exhibits risk
acceptance if for any non deterministic lottery p, u(

P
j pjxj) <

P
j pju(xj)

To relate the notion of risk aversion to potential behavior, we need
to define a few additional concepts. Given a lottery p the expected
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value is E (p) =
P

j pjxj and the variance of the lottery is V (p) =P
j pj(E (p)−xj) For a given lottery, p and expected utility represen-

tation u = (u1, ...., uJ), the certainty equivalent, C (p) , is the amount
of money that the agent values as much as the lottery. That is we
have,

u(C (p)) = EU(p).

The behavior of risk adverse individuals is somewhat predictable. They
are willing to sacrifice some expected value for reductions in variance so
that certainty equivalent is less than the expected value. In addition
if we consider two lotteries p and a lottery q with the same expected
value as p but a greater variance, then the agent will prefer p.

Definition 3.7. We say that q is a mean preserving spread of p
if q is a compound lottery that first takes the realization of p and then
adds to it a random term ε with distribution z having E (z) = 0 and
V (z) > 0.

Theorem 3.2. Given a preference relation R on lotteries and the
Bernoulli utility function u(x) that is used to represent R, the following
statements are equivalent
1. The preference relation R exhibits risk aversion
2. The utility function u(x) is strictly concave
3. For any lottery p, C (p) ≤ E (p) (and if V (p) > 0 the inequality

is strict).
4. For any two lotteries q and p in which q is a mean preserving

spread of p we have EU(q) < EU(p)

Proof. The equivalence between (1) and (2) is immediate. To
show that (2) implies (3) assume that R exhibits risk aversion. This
implies that for any non-deterministic lottery p (so that V (p) > 0), we
have u(E (p)) >

P
j pju(xj). But since u(C (p)) = EU((p)) it must be

the case that u(E (p)) > u(C (p)). Since u(x) is in increasing function
this implies that E (p) > C (p) .
To see that (3) implies (2), assume that (3) is true and consider

any two outcomes x1 and x2 with p1 ∈ (0, 1). In this case (3) and the
fact that u(x) is increasing implies that u(px1 + (1− p)x2) > pu(x1) +
(1 − p)u(x2) and thus the function u(x) is concave. Since V (p) = 0
and p deterministic result in equality this case is trivial.
To see that (2) implies (4) consider p and a mean preserving spread

q that results in x + ε with x having the distribution p and ε ∈
{ε1, ..., εT} having the distribution z. We have

EU(q) =
X
t

X
j

ztpju(xj + εt).
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By (2), for each value of xj we haveX
t

ztpju(xj + εt) < u(
X
t

ztpj(xj + εt)).

Rearranging the right hand side yieldsX
t

ztpju(xj + εt) < u(pjxj +
X
t

εt) = u(pjxj).

Summing over j yields

EU(q) =
X
t

X
j

ztpju(xj + εt) <
X
j

u(pjxj) = EU(p).

To see that (4) implies (3) consider a lottery, q. Note that the lottery q,
is a mean preserving spread of the lottery p which assigns probability
1 to Eq, (4) implies that EU(p) > EU(q). Since p is deterministic,
u(Ep) = EU(p) so we have u(Ep) > EU(q). Since u(C(q)) = EU(q)
monotonicity of u(x) implies that E (p) = E (q) > C (q) . ¤

If lottery q is a mean preserving spread of p, lottery q is said to be
second order stochastically dominated by p. One result which can be
proven by reapplying the logic of the last proof is gives a convenient
characterization of second order stochastic dominance.

Theorem 3.3. Lottery q is second order stochastically dominated
by p if and only if for any concave increasing function u(x),X

j

pju(xj) ≥
X
j

qju(xj).

Thus, risk averse individuals have preferences that conform with
second order stochastic dominance —if p second order stochastically
dominate q, a risk averse agent will prefer p to q. Now in some cases
choice over lotteries is trivial. One common notion of “no brainer”
decision problems involves choice between a lottery and another that
is said to first-order stochastically dominate it.

Definition 3.8. Lottery q is first order stochastically dominated
by p if for any non decreasing function u(x)X

j

pju(xj) ≥
X
j

qju(xj).

So in choosing between lotteries which are ordered by first order
stochastic dominance, risk attitudes are irrelevant.
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2.2. Risk Preferences with Satiable Preferences. As we dis-
cussed in Chapter 2, many of the utility functions used in political
science are satiable in that agents have most preferred outcomes. As-
suming such preferences, however, entails implicit assumptions about
risk. Consider the function in Figure 3.7 and a lottery over some x1
less that the agent’s ideal point and x2 greater than the ideal point.
As above, the expected utility of such a lottery is the intersection of
the line between u(x1) and u(x2) and the vertical line beginning at w.
However, note that since the ideal point lies between x1 and x2, there
must be at least one outcome w1 in this interval such that u (w1) >
pu(x1) + (1 − p)u(x2). Thus, satiable preferences must produce risk
adverse behavior at least in regions near the ideal point. Satiable pref-
erences need not produce global risk aversion, however. Gambles over
a set of outcomes bounded away from the ideal point for which the
agent’s utility function is convex will produce risk acceptant behavior.
The next section elaborates these points in more detail.

Figure 3.7

2.3. Risk and Higher Dimension Euclidean preferences. In
this subsection we consider choice over lotteries on Rn. In the case
of preferences that are Euclidean, Bendor and Meirowitz (2004) have
shown that we can extend the notions of risk aversion from the case of
strictly increasing preferences. Recall, that preferences over x ∈ Rn

are Euclidean if they are representable by a utility function of the form

u(x) = h(− kx− x∗k)
where x∗ is a point in Rn and h : R1 → R1 is a strictly increasing
function. If the function h is strictly concave then it is not difficult
to see that the utility function u(x) is itself strictly concave. In this
case the Bernoulli utility function will represent risk averse preferences.
However, even if the function h is not concave, the preferences exhibit
a form of risk aversion. To extend the concept of a mean-preserving
spread to Rn, we simply apply Definition 3.7 with the relevant states
in Rn.

Theorem 3.4. If u(x) is Euclidean then for any two lotteries q
and p on Rn with expected value x∗ in which q is a mean preserving
spread of p we have EU(q) < EU(p).

Proof. Assume q and p are lotteries on Rn with expected value
x∗ in which q is a mean preserving spread of p.Define dj ≡ kxj − x∗k
to be the real variable that measures the distance between random
variable x and the point x∗. Now since preferences are Euclidean we
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have EU(q) < EU(p) if and only if,X
j

qjh(− kxj − x∗k) <
X
j

pjh(− kxj − x∗k)

for some increasing function h(·). This condition is satisfied if and
only if X

j

qjh(−dj) <
X
j

pjh(−dj).

Since q is a mean preserving spread of p, it must be the case thatX
j

qjdj >
X
j

pjdj.

But this means for any increasing function g(·) including h(·) we haveX
j

qjg(−dj) <
X
j

pjg(−dj).

¤
Informally, for lotteries that are centered at the agent’s ideal point

second order stochastic dominance in outcomes corresponds to first
order stochastic dominance in terms of disutility, and thus risk attitudes
are not directly relevant to assessing how agents will compare lotteries.
Alternatively put, all Euclidean agents are risk averse over lotteries
that are centered at their ideal point.

3. Learning

Since agent’s beliefs about the probabilities of various outcomes
is the key to decision-making under uncertainty, it is important to
analyze how a rational agent should respond to new information about
the likelihood of various outcomes. Once again it is prudent to begin
with an example. Consider Figure 3.8 where an agent believes that
the incumbent politician is “good” with probability 3

4
and “bad” with

probability 1
4
. Suppose however that she could incorporate information

about the incumbent’s performance in office such as the inflation rate
in the economy. How would this change her probability assessment of
the incumbent’s quality?

Insert Figure 3.8 Here
First, let’s assume that the agent knows that good incumbents are

more likely than bad incumbent to produce low inflation. In this ex-
ample, we suppose that the agent knows that good incumbents produce
low inflation with probability 2

3
and that bad incumbent produces low

inflation with only a 1
5
probability. The first thing that our intuition
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tells us is that when inflation is low the agent should increase her prob-
ability assessment that the incumbent is good higher than her original
belief of 3

4
. Conversely, when inflation is high, the agent should lower

the probability that the incumbent is good. Fortunately, we can take
the analysis a step further and compute the exact probabilities that
should be assigned a good incumbent after either realization of the
inflation rate.
First, consider the case where inflation is low. A rational agent

should know that the outcome is either the top node or the third node
of the second panel of Figure 3.8. Further, she knows that and that
there is a 3

4
· 2
3
= 1

2
of the top node and a 1

4
· 1
5
= 1

20
probability of reaching

the third. Therefore, after observing low inflation, it is 10 times as
likely that the incumbent is good than that he is bad. Let p (l) be the
probability of a good incumbent conditional on low inflation. Since
probabilities must sum to one, p (l)+ p(l)

10
= 1 so that p (l) = 10

11
. We can

use similar reasoning to show that p (h) = 4
9
. Note the confirmation

of our intuition that a realization of a low inflation should raise the
probability that the incumbent is good while high inflation lowers it.
To generalize this example, we will be a need to be a bit more precise

about the underlying probability theory. Let A and B represent two
events (such as the terminal nodes in Figure 3.8). Suppose we know
that event B has occurred and wish to compute the probability that
event A occurs. This is known as the conditional probability of A
given event B. We denote it as follows:

Pr(A | B) = Pr(A&B)
Pr(B)

assuming Pr(B) > 0.

where Pr(A) is the probability of event A, Pr(B) is the probability
of event B, and Pr(A&B) is the probability that both events occur
(known as the joint probability).
This formula which is often termed Bayes’ law is attained by divid-

ing both sides by Pr(B), an operation which is permissible as long as
this value is non-zero. As a special case independent events have the
property that Pr(A & B) = Pr(A)Pr(B) so that

Pr(A | B) = Pr(A) Pr(B)

Pr(B)
= Pr(A)

To see this rule in action, note that the probability of low inflation and
a good incumbent

¡
1
2

¢
is the probability of low inflation conditional on

a good incumbent
¡
2
3

¢
times the probability of a good incumbent

¡
3
4

¢
.

Given these definitions, we can state the main result.
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Theorem 3.5. (Bayes’ Law) Let A1 ... AN be disjoint events
(i.e. no two can occur simultaneously) such that

P
Pr(An) = 1 and

Pr(An) > 0 for all n. Let B be some other event (which may occur
concurrently with any An ).

Pr(An | B) =
Pr(B | An) Pr(An)P
Pr(B | An) Pr(An)

Bayes’ Law gives us an easy to use formula to compute how ratio-
nal agents should update their probability assessments following new
information. Note that we can easily apply it to the voter’s problem
from above. Let A1 be the event that the incumbent is good and A2
be the event that she is bad. Since the incumbent cannot be both good
and bad, these events satisfy the requirement of disjointedness. Event
B is low inflation. For two events the formulas are:

Pr(A1 | B) =
Pr(B | A1) Pr(A1)

Pr(B | A1) Pr(A1) + Pr(B | A2) Pr(A2)
and

Pr(A2 | B) =
Pr(B | A2) Pr(A2)

Pr(B | A1) Pr(A1) + Pr(B | A2) Pr(A2)
We can obtain all of the following probabilities from Figure 3.8:

Pr(A1) =
3

4

Pr(A2) =
1

4

Pr(B | A1) =
2

3

Pr(B | A2) =
1

5
Thus, we can plug these numbers into Bayes’ Law to get:

Pr(A1 | B) =
2
3
· 3
4

2
3
· 3
4
+ 1

5
· 1
4

=
10

11

and

Pr(A2 | B) =
1
5
· 1
4

2
3
· 3
4
+ 1

5
· 1
4

=
1

11
.

Voi la!
While seemingly straightforward and logical, the application of Bayes’

Law is often criticized as a poor model of learning. Not only can it be
computationally challenging and exceed the typical individual’s grasp
of conditional probability, it can also produce counter-intuitive predic-
tions. Consider the following scenario from the Let’s Make a Deal
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game show hosted by Monte Hall. Monte offers contestants the choice
of opening three doors. Behind one door is a luxury car while the
other doors hide prizes of little pecuniary value (goats seem to have
been a favorite). Once a door is selected but before it is opened,
Monte opens one of the remaining two doors to reveal a goat. He
then asks the contestant if he would like to switch his selection to the
remaining closed door. Should the rational contestant switch? Most
people would intuitively say there is nothing to gain from switching on
the grounds that getting the car from a subsequent switch is just as
likely as getting it on the original try. The probability of winning the
car is 1

2
either way. Indeed a number of mathematicians and statisti-

cians took this position in response to the publication of this problem
in a popular newspaper column. However, this logic is incompatible
with Bayes’ law.
To simplify, suppose the contestant chooses door 3. Since the doors

are ex ante the same, the analysis of the other cases is identical. First,
consider the probability of winning if the contestant does not switch
to the remaining door. Obviously, this is the same as the original
probability that there is a car behind door 3 or 1

3
. However, now

consider the probability of winning by switching. To formalize, let A1,
A2, A3 correspond to the car being located behind doors 1, 2, and 3
respectively. Let B1, B2 corresponds to the event that Monte opens
door 1 or 2. Since we assume that Pr(A1) = Pr(A2) = Pr(A3) = 1

3
, we

simply need to compute for all of the events Pr(Bi|Aj) . Since Monte
will never expose a car, Pr(B1|A1) = Pr(B2|A2) = 0. We also assume
that in the event A3 Monte randomly selects which goat to expose.
Therefore, Pr(B1|A2) = Pr(B2|A1) = 1 and Pr(B1|A3) = Pr(B2|A3) =
1
2
.
Suppose Monte opens door 2, then the probability that a switching

contestant wins is equal to

Pr(A1 | B2) =
Pr(B2 | A1) Pr(A1)

Pr(B2 | A1) Pr(A1) + Pr(B2 | A2) Pr(A2) + Pr(B2 | A3) Pr(A3)

=
1 · 1

3

1 · 1
3
+ 0 · 1

3
+ 1

2
· 1
3

=
2

3

Similarly, if Monte opens door 1, the probability of winning is Pr(A2 |
B1) =

2
3
. So a switching contestant wins with probability 2

3
whereas a

sticking one only wins 1
3
of the time.6

6The solution we present to this problem is somewhat convoluted in order to
provide an additional demonstration of Bayes’ Rule. An easier proof is to note
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So why does the intuition that switching doesn’t pay fail us so
badly? The reason is that most people do not appreciate the impli-
cation of the fact that Monte will never reveal a car. Thus, observing
that he doesn’t open a particular door is information that a switcher
can use in his decision that a stand-patter cannot.
While the Monte Hall problem does expose a critical set of problems

with Bayesian learning, such objections can be carried too far. Bayes’
Law does tell us correctly that switchers will win 2

3
of the time. Thus,

a frequent viewer of the show can learn that one should switch even
without ever doing a conditional probability calculation. So one can
justify the use of Bayes’ rule by appealing to the notion that agents are
acting as if they had performed the calculation even if they are simply
following rules that they have learned from experience.

4. Critiques of Expected Utility Theory

While most of the models used in this book will rely heavily on
expected utility theory, it is worth pointing out that there is a large
and influential body of work critical of expected utility theory. How-
ever, the application of these critical insights and alternative models to
political game theory is still in its infancy.7

4.1. Risk, Uncertainty, and Subjective Probability. The econ-
omist Frank Knight argued that expected utility theory is a model of
risk rather than uncertainty. He defines uncertainty as the situation
where individuals lack sufficient statistical information to form esti-
mates of the probabilities of various outcomes. In other words, in a
situation of uncertainty, individuals do not know the true set of lotteries
P. However, the statistician Leonard Savage responded that expected
utility theory could be resuscitated by assuming that individuals have
subjective beliefs about P which can be used to formulate probability
distributions over outcomes.
However, Daniel Ellsberg formulated the following paradox which

cast doubt over whether uncertainty was reducible to beliefs about
beliefs. Suppose that there are two urns containing red and black
balls. In urn 1, there are 100 red and black balls where the proportion
of red balls is unknown. Urn 2, however, contains 50 red balls and 50
black balls.

that a switcher only loses if he picked the right door in the first place. Thus, a
swicther loses 13 of the time and wins

2
3 .

7“Behavioral” (as opposed to those based on expected utility theory) have
become far more common in economics in recent years (see Camerer 200x).
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Now suppose that subjects are given $100 for selecting a red ball.
Most subjects choose to select from urn 2. But when offered $100
for selecting a black ball, the modal choice is again urn II. However,
choosing urn 2 for both gambles violates the axioms of expected utility
theory. According to expected utility theory, choosing urn II in search
of a red ball indicates a belief that urn I has fewer than 50 red balls
while selecting urn 2 for a black ball suggests that the subject believes
that urn 1 has fewer than 50 black balls. Obviously, these beliefs are
inconsistent with the knowledge that urn 1 contains 100 balls. Select-
ing urn 1 in both gambles similarly violates expected utility theory.

4.2. The Allais Paradox. The predictions of expected utility
theory have been tested in a number of experimental settings. These
studies have provided robust evidence for a number of decision-making
anomalies inconsistent with expected utility theory. One of the ear-
liest and most studied anomalies was first uncovered by the French
economist Maurice Allais. This anomaly is based on the finding that
subjects often make choices inconsistent with the independence axiom.
Initially, subjects are asked to choose between lotteries a and b

where:
Lottery a: .33 chance of $2500, .66 chance of $2400, and .01 chance

of 0
Lottery b: $2400 for sure
When given these choices, subjects overwhelmingly choose lottery

b. For example, Kahneman and Tversky (1979) find that 82% choose
lottery b when given this hypothetical choice.
Next the subjects are given the choice between lotteries c and d.
Lottery c: .33 chance of $2500, .67 chance of 0
Lottery d: .34 chance of $2400 and .66 chance of 0
Experimental subjects generally choose c. Kahneman and Tversky

find that 83% choose this lottery. However, it can easily be shown
that choosing b in the first experiment and c in the second violates the
independence axiom and therefore expected utility theory. First, note
that the choices of b and c imply that

u(2400) > .33u(2500) + .66u(2400) + .01u(0)

and
.33u(2500) + .67u(0) > .34u(2400) + .66u(0)

Rearranging the top inequality, we get .34u(2400) > .33u(2500) +
.01u(0) for the first inequality and for the second we get .33u(2500) +
.01u(0) > .34u(2400). Thus, we derive a contradiction. To see that
the contradiction is attributable to a violation of the independence
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axiom, note that lottery a can be written as the compound lottery
.34(33/34, 0, 1/34)+ .66(0, 1, 0) over the outcomes (2500, 2400, 0) while
b is .34(0, 1, 0)+ .66(0, 1, 0). Thus, if aPb, then the independence ax-
ioms holds that (33/34, 0, 1/34) P (0, 1, 0). But this in turn implies
that .34(33/34, 0, 1/34) + .66(0, 0, 1) P .34(0, 1, 0) + .66(0, 0, 1) which
means that cPd.

4.3. Prospect Theory. In their classic article, Kahneman and
Tversky (1979) propose an alternative model of decision-making to ac-
count for the Allais paradox and other experimental anomalies. Whereas
many previous authors attributed the Allais paradox to a preference
for certainty, Kahneman and Tversky note that the independence ax-
iom is often violated when all of the lotteries are far from sure things.
Consider the following pairs of lotteries.
Lottery a: .45 chance of $6000, .55 chance of 0
Lottery b: .90 chance of $3000, .10 chance of 0
Lottery c: .001 chance of $6000, .999 chance of 0
Lottery d: .002 chance of $3000 and .998 chance of 0
They find that the modal choices were b over a and c over d, choice

which violate the independence axiom. Since lotteries c and d have
miniscule probabilities, subjects seem inclined to go for the one with
the bigger prize. However, when both probabilities are reasonably
high, subjects are still inclined to take the one that is relatively more
certain.
Kahneman and Tversky note, however, that this preference for cer-

tainty does not hold when gambles are over losses rather than gains.
Consider the following pairs of lotteries:
Lottery a: .80 chance of −$4000, .20 chance of 0
Lottery b: −$3000 for sure
Lottery c: .20 chance of −$4000, .80 chance of 0
Lottery d: .25 chance of −$3000,.75 chance of 0
If the Allais paradox were simply due to preferences for certainty,

the modal choices would again be for b and c. However, Kahneman
and Tversky find that a and d are the modal choices. Their inter-
pretation is that while individuals are risk adverse over gains, they are
risk acceptant over losses.
Finally, Kahneman and Tversky argue that the presentation of the

lotteries can affect the choices that individuals make. Suppose that
an individual has been given $1000 and then offered:
Lottery a: .5 chance of an additional $1000
Lottery b: $500 for sure
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Next consider an individual who has been given $2000 and offered
the choice of:
Lottery c: .5 chance of losing $1000
Lottery d: Lose $500 for sure
Kahneman and Tversky find that b and c are the modal choices

even though expected utility theory holds that a and c are identical
lotteries as are b and d.
To account for these anomalies, Kahneman and Tversky propose

prospect theory as an alternative to expected utility theory. Accord-
ing to their model, choice involves two distinct phases: editing and
evaluation. In the editing phase, individuals “organize and reformu-
late the options so as to simplify subsequent evaluation and choice.”
4.3.1. The Editing Phase. Kahneman and Tversky identify six dis-

tinct operations that occur during the editing phase.

(1) Coding: Since Kahneman and Tversky argue that individuals
evaluate gains and losses separately. Thus, the first stage
of editing involves determining a reference point and coding
outcomes as either gains or losses.

(2) Combination: Individuals combine probabilities associated
with identical outcomes.

(3) Segregation: Individuals identify and segregate the riskless
components of a choice. For example, a lottery than produces
$200 with probability .7 and $100 with .3 is interpreted as a
riskless $100 gain and a lottery over an addition $100.

(4) Cancellation: When comparing two lotteries, individuals ig-
nore the common elements of both lotteries. For example, the
$2000 bonus in the last example “cancels out” and does not
effect the choice between c and d.

(5) Simplification: Individuals may simplify the tasks by rounding
probabilities such as recoding .49 to even odds or by dropping
extremely unlikely outcomes from consideration.

(6) Detection of dominance: Individuals drop from consideration
any lottery that is first-order stochastically dominated.

4.3.2. The Evaluation Phase. Kahneman and Tversky’s model of
evaluation is very similar in form to expected utility theory in that both
models postulate that individuals evaluate gambles using a weighted
average of the payoffs to the outcomes. However, in Kahneman and
Tversky’s model the weights used are not the subjective probabilities
of the outcomes but rather functions of the probabilities. They also
argue, contra expected utility theory, that the outcome value functions
should treat gains and losses asymmetrically.
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Let x and y be two distinct monetary outcomes where p is the
probability of x, q is the probability of y. With probability 1− p− q,
nothing happens or the payoff is 0. Kahneman and Tversky define
prospects as strictly positive if x,y > 0 and p+ q = 1, strictly negative
if x, y < 0 and p+ q = 1, and regular in all other cases. For a regular
prospect, individuals are assumed to maximize

V (x, p; y, q) = π (p) v(x) + π(q)v(y)

where v(x) and v(y) are the values of each outcome and π(p) and π(q)
are weights based on the outcome probabilities. They assume that
v(0) = 0, π(0) = 0, and π(1) = 1. Note this function would be an
expected utility function if v were a Bernoulli function and π(p) = p
for all p.
For strictly positive or strictly negative prospects such as x > y > 0

and x < y < 0 where p+ q = 1, individuals maximize

V (x, p; y, q) = v(y) + π (p) [v(x)− v(y)] .

This functional form captures the idea that individuals evaluate such
lotteries as a risk-free component v(y) plus a risky component v(x)−
v(y).
A key assumption of Prospect Theory is that v (·) is asymmetry

with respect to gains and losses. Kahneman and Tversky make three
specific assumptions.

(1) The value function is defined in terms of deviations from a
reference point (no gains or losses).

(2) The value function is concave for gains and convex for losses.
(3) The value function is steeper for losses than for gains.

Figure 3.9 illustrates a function satisfying these properties.

Insert Figure 3.9 Here
Additional, Kahneman and Tverskymake several assumptions about

the form of the decision weights π (p).

(1) π is an increasing function of p.
(2) π(0) = 0.
(3) π(1) = 0.
(4) For small values of p, π(p) > p.
(5) For small values of p, π is subadditive i.e. π(rp) > rπ(p) for

0 < r < 1.
(6) For all p, π satisfies the property of subcertainty i.e. π(p) +

π(1− p) < 1.

(7) For all 0 < p, q, r < 1, π is subproportional i.e. π(pq)
π(p)
≤ π(pqr)

π(pr)
.
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The first three assumptions are straight-forward. The fourth is sim-
ply the idea that individuals over-weight small probabilities. Subad-
ditivity, which helps resolve the Allais paradox, implies in conjunction
with Assumption 2 that p is convex for small values of p (see exercises 1
and 2). Subcertainty also helps resolve the Allais paradox. Recall that
the modal choices require that v(2400) > π(.33)v(2500)+π(.66)v(2400)
and π(.33)v(2500) > π(.34)v(2400). These two inequalities require
that 1 > π(.66)+π(.34). Finally, subproportionality accounts for many
of the violations of the independence axiom since it implies that for a
fixed ratio of probabilities, the ratio decision weights will be closer to
unity when the probabilities are high.
A function satisfying these assumptions is plotted in Figure 3.10.

Insert Figure 3.10 Here

5. Time Preferences

In many of the dynamic models considered in this book, we need
to characterize how individuals evaluate payoffs they receive now as
opposed to those the receive in the future. We typically assume that
individuals weight current utility more than future utility (if for no
other reason, we could die tomorrow). We use the idea of the discount
factor to capture this intuition. Let 0 < δ < 1 be relative weight that
players put on utilities one period in the future. Utilities two periods
in the future are weighted by δ2 and so on such that utilities t periods
in the future are discounted by δt.

5.1. Computing Payoff Streams. Often we model games in
which there is no determinate end date as infinite games where the
number of periods goes to ∞. Clearly, in an infinite game, we can no
longer simply add up the payoffs from each period in order to deter-
mine the utility from a sequence of actions. Fortunately, geometric
discounting helps to facilitate these calculations.
We consider the easiest case first. Assume that an agent gets a

payoff of ut = u over an infinite number of periods. There are two
ways to calculate the value function v∞ of this stream of utilities.

Method 1: Note that we can write v∞ as u+δu+δ2u+... = u
∞P
t=0

δt.

Since 0 < δ < 1,
∞P
t=0

δt is a convergent power series. It is a well known

result that
∞P
t=0

δt converges to 1
1−δ so that v

∞ = u
1−δ . We can easily

derive the following facts about this particular power series:
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(1)
PT

t=0 δ
t = 1−δT+1

1−δ
(2)

P∞
t=T δ

t = δT

1−δ
(3)

PS
t=T δ

t = δT−δS+1
1−δ

Therefore, we can compute finite streams of utility easily as well.
For example, the value of receiving u for T periods is u

PT
t=0 δ

t =
u(1−δT+1)

1−δ .
Method 2: Another way to derive v is using Bellman’s principle

of optimality. Since v is an infinite stream of utilities, we should be
able to write it as a one period utility u plus the discounted value of
an infinite stream of utility beginning one period hence. Therefore,

v∞ = u+ δv∞

so that v∞ = u
1−δ . We can compute finite streams using this method

as well. Again assume that the agent receives payoff u for T periods
and we wishing to compute vT . We know that vT = v∞ − δT+1v∞ so

that vT = u
1−δ − δT+1 u

1−δ =
u(1−δT+1)

1−δ .
While the advantages of this method are small in the simple ex-

ample of a constant stream of utility, they can be substantial in more
complex settings. Now assume that there are n states of the world
(s1, ...., sn). In each state, the agent receives un. We assume that
the state evolves according to a Markov process such that Pr(St =
si|St−1 = sj) = πij.
Now suppose we want to compute the value vj of the stream of

utilities beginning from state j. Using Bellman’s principle, it is easy
to see that

vj = uj + δ
X
i=1

πijvi

This creates a linear system of n equations and n unknowns (the vi’s).
Sometimes it will be easier to solve such a system by replacing one of

the equations with the requirement that
nP
i=1

πij = 1 for all j.

Let’s consider an easy example. Suppose we wanted to compute
the long term payoff to a political party who values holding a particular
office u1 per period and gets a payoff of u2 in periods in which it does
not hold the office. Suppose that there is an incumbent party effect
so that if it holds office it wins with probability p > 1

2
and remains in

office (state 1). However, this also implies that when it is out of office
(state 2), it will remain out of office in the next period with probability
p. With probability 1 − p, it transitions states either from office to
out of office or vice versa. To compute, the party’s payoffs from being
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in states 1 or 2, we can set up the relevant Bellman equations. Note
that n = 2, π11 = π22 = p, π12 = π21 = 1− p, and u1 > u2 Thus, the
Bellman’s equations are

v1 = u1 + δ(pv1 + (1− p)v2)

v2 = u2 + δ((1− p)v1 + pv2)

It is straightforward to derive

v1 =
(1− δp)u1 + δ(1− p)u2

1− 2δp+ δ2(2p− 1)

v2 =
δ(1− p)u1 + (1− δp)u2

1− 2δp+ δ2(2p− 1)
In these examples, we have taken the utility streams as exogenous
(either fixed or based on a fixed set of probabilities. This can be relax
significantly. Suppose that the agent chooses xt ∈ X(st) in every time
period to maximize the discounted value of the stream u(xt, st) where
st ∈ (s1, ...., sn) is the state of the world in time t. We may also allow
the probability distribution of transitions from st to depend on xt so let
π(st+1|xt, st) be the probability of observing some state st+1 following
state st and choice xt. We will only consider stationary plans i.e. those
in which the prescription depends only on the state. Let x(s) be a
stationary plan specifying the action taken when the state is s.
We can then characterize the payoffs to implementing plan x(s) in

state s as

v(x(s), s) = u(x(s), s) + δ
X
s0

v(x(s0), s)π(s0|x(s), s)

Assuming that we can solve for v(x(s), s) for all plans, we can compute
the optimal one as

v∗(s) = sup
x

v(x(s), s)

Bellman’s principle of optimality is that

v∗(s) = sup
x∈X(s)

"
u(x, s) + δ

X
s0

v∗(s0)π(s0|x, s)
#
.

5.2. Hyperbolic Discounting. While most of the literature on
repeated games uses the model of constant discounting, there is a grow-
ing literature in behavioral economics on alternatives more consistent
with experimental evidence.8 The most widely studied alternative is

8The reader should review optimization in the mathemtical appendix before
proceeding to this section.



5. TIME PREFERENCES 49

hyperbolic discounting which assumes that at time 0 agents discount
the utility at time t by

h(t) = (1 + αt)−
γ
α

for γ > 0 and α > 0. Unless α is close to zero, hyperbolic discounting
weighs the future much more heavily than constant discounting. It
also implies that agents have a “time consistency” problem. What
they consider optimal plan for time t depends on how far time t is in
the future. Suppose that an agent has to decide how to allocate $1
of consumption over three periods 0, 1, 2. Assume that U(x) =

√
x

Using constant discounting the optimal plan solves
√
x0 + δ

√
x1 + δ2

√
x2

such that
X

xt = 1

The solution must satisfy x1 = δ2x0 and x2 = δ4x0. Substituting into
the budget constraints, we get that

x0 =
1

1 + δ2 + δ4

x1 =
δ2

1 + δ2 + δ4

x2 =
δ4

1 + δ2 + δ4

Now consider what would happen if the agent re-optimized after con-
suming x0 =

1
1+δ2+δ4

in the first period. She would again optimally
choose x2 = δ2x1. Substituting this into the constraint x1 + x2 =
δ2+δ4

1+δ2+δ4
, we get

x1 =
1

1 + δ2
· δ2 + δ4

1 + δ2 + δ4
=

δ2

1 + δ2 + δ4

x2 =
δ4

1 + δ2 + δ4

Thus, she will wish to continue with her optimal consumption plan by
consuming exactly as much as in period 2 as she had forecast.
Now consider the same allocation problem when the agent uses

hyperbolic discounting. To keep the algebra simple, let α = γ = 1.
Thus, the agent solves

√
x0 +

1

2

√
x1 +

1

3

√
x2

such that
X

xt = 1
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The first order conditions for the optimum are x1 = 1
4
x0 and x2 = 1

9
x0.

Therefore, the solution is

x0 =
36

49

x1 =
9

49

x2 =
4

49
Again consider what happens if the agent re-optimizes after consuming
x0. Now the first order condition is x2 = 1

4
x1. Substituting the

constraint that x1 + x2 =
13
49
, we find that

x1 =
4

5
· 13
49
=
52

245
>
9

49

x2 =
13

245
<
4

49
Thus, the agent will wish to change her optimal plan and shift more
consumption to period 1. The reason for this anomaly is that she the
relative weight of period 1 to period 2 consumption is higher in period
1 than it was in period 0.
While hyperbolic discounting has been useful in explaining experi-

mental anomalies and temporal patterns in consumption (retirees con-
sume less than a constant discounting model would predict), the appli-
cations in political science have been few.9

6. Exercises

Exercise 3.1. Let Smith be a member of the House of Representa-
tives. Smith is trying to decide whether or not to run for the Senate.
He believes that he has a 50% chance of winning his party’s nomina-
tion, and if he gets the nomination he has a 40% chance of winning
the seat. Suppose that his utility from the Senate seat is W while his
utility of losing, returning home, and running his family used car lot is
L. His utility of keeping his House seat is H.

(1) Using a lottery tree, describe the lottery involved with running
for the Senate.

(2) Compute the expected utility of running for the Senate.

9One conceptual obstacle is that utilities over infinite horizons may not be well
defined. Suppose that an agent evaluated an infinite stream of constant utilities

u. Evaulation requires that the series
∞P
t=0

h(t)u converge. However, this will not

be the case for large set of α and γ.
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(3) How low must H be relative to W and L before Smith will
decides to run for the Senate?

Exercise 3.2. Prove Theorem 3.1.

Exercise 3.3. Compute the expected payoff of the following lottery.
There are 5 periods. In each period, the agent flips a coin and receives
one dollar for each consecutive period for which she has obtained heads
i.e. if she has received heads x consecutive times, she receives $x.

Exercise 3.4. Suppose that instead of always revealing a goat,
Monte Hall randomly selects a door to open and thus occasionally re-
veals the car. Clearly, a contestant should switch to the open door if
the car is revealed, but should she switch to the closed door if a goat is
revealed?

Exercise 3.5. Suppose that a country is fighting in a war. In each
period, it cost f > 0 to fight a battle. The country wins each battle with
probability π. The country wins the war and receives a payoff of w > 0
forever if it wins two consecutive battles. If it loses two consecutive
battles, it loses and receives l = 0 forever. The county discounts future
periods by δ.
There are five states corresponding to the consecutive wins and

losses in battle. Two of these are terminal states corresponding to
victory of loss of the overall war. For each of the non-terminal states,
compute the expected utility of continuing the war. Find a condition
for f in terms of π, w, l for which the country chooses not to start the
war. Find a condition for the country to surrender after losing one
battle.

Exercise 3.6. Prove that π(p) > p and sub-additivity imply that
the decision weight function π is convex for small values of p.

Exercise 3.7. Consider the following pair of lotteries:
Lottery a: .45 chance of $6000, .55 chance of 0
Lottery b: .90 chance of $3000, .10 chance of 0
Lottery c: .001 chance of $6000, .999 chance of 0
Lottery d: .002 chance of $3000 and .998 chance of 0
Which choices are predicted by Prospect Theory? Why?





CHAPTER 4

Social Choice Theory

1. The Open Search

In the pages that follow we consider a scenario that many read-
ers of this book may soon encounter in their professional lives (if they
have not already): the “open” faculty search. Consider a fictional
political science department whose membership is spread evenly across
five sub-fields: American (A), comparative (C), international relations
(I), theory (T ), and formal theory/methods (F ). This year the fic-
tional university is having a mediocre year financially so the dean only
gives the department authorization for one additional hire. This dean,
unwilling to alienate any of the department’s various factions, does
not specify which field the department should, but tells the depart-
ment “since you study politics you should be able to settle this fairly.”
Those readers who have experienced a similar situation in their own
departments should be smiling knowingly at the dean’s folly.
Members of each sub-filed have homogeneous preferences as to which

field the new hire should come. Indeed, each field has its own com-
plete and transitive ordering over the field of the potential hire. These
rankings are given by Table 4.1:

Table 4.1
A C I T F
A C I T F
F T C I A
C I T C T
I A F F C
T F A A I

So the department chair sets out to figure out how the department
should decide. The first idea she entertains is to have the department
vote based on plurality rule. Each member of the department is to cast
a ballot for their favorite field and the one with the most votes wins.
However, the chair quickly determines that the election would generate
a five-way tie so she abandons that idea. Next she considers pair-wise

53
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majority voting. Under this procedure, each field will be paired against
each other field. If any field wins all of the pair-wise comparisons, the
department would hire in that field. Sure that this is a fair way to
decide, she implements this procedure in the next department meeting.
The meeting begins with a vote between A and C. Field C wins with
support from T and I. However, in the vote between C and I, I wins
3-2, however T beats I. While T survives the vote with F , it loses to
C. Thus, every field is defeated in at least one pairwise vote. The
chair’s procedure has failed to bring about any resolution. However,
the chair does note that A loses in every pairwise vote and F loses to all
fields except A. So at least she concludes that neither an Americanist
nor a formal theorist should be hired.
Frustrated the chair decides that a scoring system such as the one

used to rank college football teams might do the trick. Undeterred
by previous failures, she proposes that each department member rank
each field. A top ranking will give the field 5 points, a second ranking
4 points, and so on. If everyone voted according to his preferences,
the chair calculated that the ranking would be C (17 points), T (16
points), I (15 points), F (14 points), and A (13 points). However,
before the vote could take place, a theorist citing an obscure 16th
century philosopher claimed it was inappropriate to weigh fourth and
fifth rankings so heavily. He suggested that the vote be based solely
on ranking the top three. Such a procedure would guarantee that the
outcome was a tie between C and T. Nevertheless, not feeling that the
application of the dead philosopher’s theory was appropriate in this
circumstance, the chair moved forward with the original procedure.
However, she was taken aback by the results. The formal theorists,

sensing the opportunity to be strategic, cast their ballots with T in the
first position and C in the fifth position. This resulted in 18 points
for T and only 16 for C, an outcome preferred by F . Infuriated by the
perceived duplicity, the C’s called for a revote. Their plan was to drop
T to the fifth position on their ballots and win 16 to 15. However, the
chair quickly realized that T would simply drop C to the bottom in
retaliation which might even lead to I winning if they also cast their
ballots strategically. She quickly adjourned the meeting. The next
day she called the dean to have the line transferred to the economics
department.
That the search ended in failure is not surprising. The fundamen-

tal result of social choice theory is that collective choice processes must
either restrict the set alternatives or violate some desirable normative
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properties. Furthermore, as we will soon see, all mechanisms for mak-
ing collective decisions are subject to strategic manipulation by agents
such as that perpetrated by F .

2. Preference Aggregation Rules

In this section, we lay out the basic notation and ideas for the
formal analysis of preference aggregation rules. We will limit ourselves
to the case of a finite set of agents N = {1, 2, ..., n} (n > 2) who are
to choose some outcome from the set X.1 Our primary goal is to
understand how the preferences of the individual agents map into the
collective preferences so we assume that agent i has preference ordering
Ri on X. As in chapter 2, we assume that these preference orderings
are complete and transitive. We will denote the set of all possible
complete and transitive preference orderings as R . We denote a list of
preference orderings for all n agents as ρ = {R1, R2, ..., Rn} which we
call a preference profile. The set of profiles is therefore Rn. By B we
denote the set of complete orderings on X.

Definition 4.1. A preference aggregation rule is a function f :
Rn→ B.
A preferences aggregation rule is simple a procedure that takes the

set of individual preferences orderings and produces a social preference
ordering. While we use subscripted Ri to represent individual order-
ings, we denote the social ordering as R. As an example, consider the
pairwise majority voting illustrated in the introduction to this chapter.
We can formally define that function such that for two alternatives x
and y, xRy if at least as many agents xRiy as yRix. Since a complete
ordering can be produced for any set of preferences, this procedure sat-
isfies our definition. Importantly, our definition does not restrict the
outcomes of preference aggregation rules to be transitive. Indeed, in
our fictional department pair-wise majority voting produces T P I P
C P T.
What properties would we like our preference aggregation rule to

satisfy? Perhaps the most important feature would be the ability to
generate a best outcome so that the agents will actually have some-
thing to choose. In other words, we would like the social maximal
set M(R,X) to be non-empty, and we would like this to be true for
all preference profiles. However, we know from chapter 2 that this
requires that R be transitive.

1Throughout this chapter, we will focus only on models of complete informa-
tion so that we can speak interchangeably between choosing actions, policies, or
outcomes.
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Definition 4.2. A preference aggregation rule f is transitive if for
every ρ ∈ Rn the ordering R is transitive.

Secondly, it would be nice that the rule be at least minimally de-
mocratic so that the preferences of a single agent or dictator didn’t
completely determine the social ranking of the alternatives.

Definition 4.3. A preference aggregation rule f is non-dictatorial
if there does not exist an i ∈ N such that for every ρ ∈ Rn for every
x, y ∈ X, xPiy implies xPy.

Next, we wouldn’t look to favorably at aggregation rules that pro-
duced social rankings that all agents disagreed with. If all agents
prefer x to y, society’s preferences should also reflect this ordering as
well. This criteria was first expounded by the Italian economist Vil-
fredo Pareto is often referred to as Pareto efficiency or optimality.

Definition 4.4. A preference aggregation rule f is Weakly Paretian
if, for any x, y ∈ X, if xPiy for every i ∈ N then xPy.

Finally, it would be nice if the social preferences ordering for any
two outcomes depended only on the individual preference orderings for
those two outcomes. One of the reasons that the formal theorists
were able to manipulate the outcome of the chair’s counting procedure
is that the social ranking between C and T depended on F ’s relative
preferences for F , A, and I.2 From the perspective of a choice between
C and T those preferences should be irrelevant. This property is known
as the independence of irrelevant alternatives or IIA.

Definition 4.5. A preference aggregation rule f is independent of
irrelevant alternatives if, for any pair of policies x, y ∈ X and any two
profiles ρ, ρ0 ∈ Rn with xRiy if and only if xR0iy for all i ∈ N , xRy if
and only if xR0y.

These all seem like reasonable properties and each can be justified
easily on normative or practical grounds (though the case for IIA is
weaker). The properties of transitivity, Pareto optimality, and IIA can
also be justified using the fact that they are all satisfied by an individual
decision maker. Thus, these are the properties necessary so that social
decision-making is as well behaved as that of a rational individual.
Unfortunately, one of the fundamental results in all of social science

2This couting rule is known as the Borda count. For a formal definition,
assume each agent has complete strict preferences and let ri(x) = |z : zPix| (read:
number of outcomes prefered to x by agent i). Then the Borda count rule is for
all x, y ∈ X xPy if and only in

P
i∈N ri(x) <

P
i∈N ri(y).
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tells us that aggregation rules cannot satisfy all of these properties
simultaneously . Arrow’s Theorem says that the only aggregation
function that produce transitive preferences while satisfying the Pareto
principle and IIA is a dictator, not a happy result unless your last name
happens to be Castro. Thus, the only way social preferences act like
individual preferences is if they are in fact individual preferences.
We now state and prove Arrow’s Theorem.

Theorem 4.1. If X is finite and has at least three alternatives, then
there is no preference aggregation rule f : Rn→ B that is transitive, non
dictatorial, weakly Paretian and independent of irrelevant alternatives.

We need one more definition before turning to Arrow’s Theorem.

Definition 4.6. Given a preference aggregation rule f a set L ⊂ N
is semidecisive for x against y if for every ρ ∈ Rn with xPiy (all i ∈ L)
and yPjx (all j ∈ Lc = N\L) we have xPy. A set L is decisive for x
against y if for every ρ ∈ Rn with xPiy (all i ∈ L) we have xPy. A
set L is decisive if for every x, y ∈ X it is decisive for x against y.

A convenient proof of Arrow’s theorem rests on first establishing a
property about decisiveness.

Lemma 4.1. Assume f is a transitive preference aggregation rule
that is independent of irrelevant alternatives and weakly Paretian. If
L ⊂ N is semidecisive for x against y for some x, y ∈ X then L is
decisive.

Proof. Assume that L ⊂ N is semidecisive for x against y and
that under the profile ρ ∈ Rn xPiz for all i ∈ L. Consider a profile
ρ0 ∈ Rn such that for all i ∈ L xP 0iyP

0
iz and for all j ∈ Lc yP 0

jx and
yP 0

jz with z /∈ {x, y} and for all i ∈ Lc xRiz iff xR0iz. Since L is
semidecisive for x against y xP 0y. Since f is weakly Paretian yP 0z.
Since f is transitive xP 0z. But since the preferences of Lc on x, z have
not been specified in ρ0 and both ρ and ρ0 agree on x and z (i.e. xRiz
iff xR0iz), the fact that f is IIA implies xPz. Thus L is decisive for x
against z. This of course implies that L is semidecisive for x against
z and an analogous argument demonstrates that L is decisive for x
against y. We now verify that L is decisive for y against z. Consider
a profile ρ0 ∈ Rn with yP 0

i z for all i ∈ L and ρ+ ∈ Rn such that for
all i ∈ L yP+i xP

+
i z and for all j ∈ Lc zP+

j x and yP+j x and for all
i ∈ Lc yR0i z iff yR+i z. Since we have already shown that L is decisive
for x against z we have xP+z. Since f is weakly Paretian we have
yP+x. Since f is transitive we have yP+z. Since the preferences
of only members of L have been specified on {y, z} by ρ+ and both
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ρ0 and ρ+ agree on y and z, IIA implies yP 0z. Thus L is decisive
for y against z. This of course implies that L is semidecisive for y
against z. Relabeling the first step and using this fact implies that L is
decisive for y against x. Combining these (boldfaced) conclusions
leads to the claim that L is decisive.¥ ¤

Thus if any group is every semidecisive for some pairwise com-
parison than the group is decisive. For preference aggregation rules
satisfying IIA and the weak Pareto criterion if group its way once, it
gets its way on all comparisons. We now complete the proof of Arrow’s
theorem by showing that either an individual is decisive or the entire
collective is not decisive. The first finding violates the non-dictatorial
condition and the second violates the weak Paretian condition. Thus
the proof demonstrates the incompatibility of Arrow’s conditions.

Proof of Arrow’s Theorem. Assume that X is finite and has
at least three alternatives. By way of a contradiction assume that we
have a preference aggregation rule that is transitive, non dictatorial,
weakly Paretian and independent of irrelevant alternatives. Given the
lemma, for any set L ⊂ N either L is decisive or there is no pair x, y ∈
X for which L is semidecisive for x against y. Consider two disjoint sets
A,B ⊂ N (disjoint means that A ∩B = ∅) which are not semidecisive
for any x and y (and thus not decisive) Let C = N\{A ∪ B}. Since
n > 2, and no singleton set {i} is decisive, three such sets A,B,C
exist. Now consider the profile ρ− ∈ Rn with xP−i yP

−
i z for i ∈ A;

zP−j xP
−
j y for j ∈ B; and yP−t zP

−
t x for t ∈ C. Since A and B are not

semidecisive for any pairs, we must have zP−x and yP−z. Since f is
transitive we must have yP−x. This implies that the set A ∪B is not
semidecisive for x against y. This means that the set is not decisive.
Thus the union of two disjoint sets which are not decisive is also not
decisive. Since f is not dictatorial no singleton set is decisive. This
conclusion means that no (finite) union of individuals is decisive. But
this implies that N is not decisive. This contradicts the assumption
that f is weakly Paretian. Thus the result is established.¥ ¤

The introduction to this chapter provides many examples of the
implications of Arrow’s theorem. We have already pointed out that
pairwise majority voting is not transitive and that the Borda count
does not satisfy IIA. As an additional example, consider unanimity
rule which we define as xPy if and only xRiy for all i and xPiy for
some i. Clearly, this rule satisfies the weak Pareto criterion and it
satisfies IIA since the rule operates only on pairs of alternatives. But
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it is not transitive. To see this suppose that we have the following
individual preference orderings:

Table 4.2
1 2 3
y z z
z y x
x x y

Clearly, we have xRy and yRz. However, zPx.
It is important to note that a preference aggregation rule has as

its domain the set of all possible preference profiles. Thus, Arrow’s
theorem does not does not rule out the possibility that there is a satis-
factory way to aggregate preferences for a given profile. One response
to Arrow’s theorem is to consider restrictions to the set of profiles and
consider whether there are preference aggregation rules that satisfy the
normative axioms on this smaller set.
One of the most common restriction is single-peakedness. Intu-

itively, single-peakedness means that there is some way of ordering
the outcomes so that each agent’s preferences rankings increase up to
the most preferred outcome and then decline after that. Consider
Figure 4.1 which plots preferences ordering for our fictional political
science department. Given ordering of the outcomes ACITF, only
fields I and T have preferences with a single peak as their preference
rank is always increasing up to their ideal outcome and declining af-
terwards. The other fields have multiple peak preferences over the
ordering ACITF. For example, field A has peaks at A and F . The
motivated reader can verify that there is no way to order the outcomes
so that all preferences have a single peak. Thus, the preference profile
of our fictional department is no single-peaked. However, consider
the following profile:

Table 4.3
A C I T F
A C I T F
F T C C A
I I A I I
C A F A C
T F T F T

Insert Figure 4.1 Here
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Now we if we order the outcomes TCIAF (or FAICT ) then all
fields have a single peak at the outcome associated with their own field
as illustrated in Figure 4.2. To foreshadow our main result, consider
the outcome of pairwise majority voting. Note that now I defeats
all of the other alternatives. Furthermore, pairwise majority voting
produces the transitive ordering I P A P C P F P T , the identical
to the preferences of I. Is it a coincidence that majority voting works
well with our new single peaked preference profile? No, as we will see
that single-peakedness is a sufficient (but not necessary) condition for
the transitivity of majority rule.

Insert Figure 4.2 Here
Before stating and proving this result, we need a bit more notation.

Let q be an ordering function which takes the set of outcomes and
assigns each a unique rank. Formally, q : X → {1, 2, .., |X|} is a one-
to-one and onto function (or bijection).3 Now we can formally define
single-peakedness.

Definition 4.7. Given a set N and a choice space X a preference
profile ρ ∈ Rn is single-peaked if there exists some bijection q : X →
{1, 2, .., |X|} such that for every i ∈ N there is some ti ∈ X such that
if q(y) < q(ti) then tiPiy (and if q(x) < q(y) < q(ti) then tiPiyPix)
and if q(ti) < q(b) then tiPib (and if q(ti) < q(b) < q(c) then tiPibPic).
The set of single-peaked profiles is denoted S ⊂ Rn.

In the definition the policy ti is interpreted as i’s ideal policy, and
the further the rank q(y) is from q(ti) the less the agent prefers y. Thus,
singlepeakedness implies that xPiy if |q(ti)− q(x)| < |q(ti)− q(y)| .
This inequality implies that if q(x) > q(y), xPiy if and only if q(ti) >
q(x)+q(y)

2
. Conversely, if q(y) > q(x), xPiy if and only if q(ti) <

q(x)+q(y)
2

.
We can now formally state the theorem.

Theorem 4.2. Given ρ ∈ S majority rule is transitive, weakly
Paretian, IIA and non dictatorial.

The proof is very straightforward, but we will simplify a little bit
by assuming that there are an odd number of agents. We begin by
showing the preference ordering majority rule produces the preference
ordering of the agent with the “median ideal point.” The median ideal
point is defined as tm such that q(ti) > q(tm) for exactly N

2
agents

3A function q : X → X is one-to-one if for every y ∈ X the set q−1(y) = {x ∈
X; q(x) = y} is a singleton. The function is onto if for every y ∈ X there is some
x ∈ X s.t. q(x) = y.
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and q(ti) < q(tm) for the remaining agents. The claim is that the so-
cial preference matches agent m’s preference so that xPy if and only if
xPmy. Let’s prove necessity first. Suppose that xPmy. If q (x) > q (y) ,
then all agents with q(ti) < q(tm) prefer x to y. Since there are N+1

2

agents preferring x to y, xPy. If q (x) < q (y) , then m and the N
2

agents with q(ti) > q(tm) prefer x so that xPy. To show sufficiency,
suppose that xPy. Since at least N+1

2
must prefer x to y, at least one

agent with q(ti) ≤ q(tm) and one agent with q(ti) ≥ q(tm) prefers x to
y. Denote these agents as l and h respectively. Suppose that yPmx,
but that xPly and xPhy. Suppose that q (x) > q (y) . Then single-
peakedness and yPmx implies that

q(x)+q(y)
2

> q(tm) while xPhy and
xPly imply that q(th) >

q(x)+q(y)
2

and q(tl) >
q(x)+q(y)

2
. This contra-

dicts q(th) > q(tm) > q(tl). Finally, since the social preference profile
matches that of the median agent, it has the properties of individual
preferences which include transitivity and IIA. The social ordering
is clearly weakly Paretian since the median’s preferences never con-
flict with the social preferences. However, it might seem that m is
a dictator. However, recall that a dictator is one whose preferences
determine social preferences for any preference profile. Since different
profiles produce different median agents, m is not a dictator.

3. Collective Choice

While it is useful to begin with the properties of aggregate prefer-
ence orderings, we are ultimately interested in the set of policies that
are maximal for a preference aggregation rule. As we did for indi-
viduals, we will assume that the social choices is the outcome that
is maximal choice from the aggregate preference ordering. In social
choice setting, we refer to the set of maximal choices as the core.

Definition 4.8. Given X, ρ ∈ Rn and a preference aggregation
rule, the core is defined as Cf(ρ)(X) =M(f(ρ), X).

Applying theorem 1 of chapter 2, we know that if X is finite and
the collective preference is complete and transitive then the core is non-
empty, and the social choice is well defined. However our analysis of
Arrow’s theorem indicates that transitivity of preference aggregation
rules is not always satisfied. In such a case, we say that the core is
empty or does not exist.
However, given the results of the last section, we know that majority

rule is transitive under single peaked preferences is transitive so that
a core does exist. Since the social preference under majority rule
and single-peaked preferences is the preference ordering of the agent
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with the median ideal point, it follows that the majority rule core
is tm. When a majority rule core exists, its outcome is known as a
Condorcet winner after the Marquis de Condorcet who was among the
first to formally study the properties of voting procedures. However,
the result that the majority rule core is non-empty with single peaked
preferences is generally attributed to Duncan Black.

Theorem 4.3. If n > 2 is odd and ρ ∈ S then letting f(·) be ma-
jority rule, Cf(ρ)(X) = {ti : |j ∈ N\i : tj ≤ ti| = |k ∈ N\i : tk ≥ ti|}.
That is the core is the median voter’s ideal point.

The proof is essentially the same as that of the transitivity of ma-
jority rule with single peaked preferences. This result indicates that
if we are willing to assume that preferences satisfy the restrictive as-
sumption of single-peakedness the majority rule core is well defined,
and submitting to the "will of the majority” may be a reasonable way
to make collective choices. However the restriction may not be ap-
propriate for some settings. For example, suppose the set of policies
is two dimensional. Then as we will see, the generalization of single
peakedness is extraordinarily restrictive.
Consider Figure 4.3, which gives ideal points for five voters in two

dimensions. We will assume that each agent has circular indifference
curves so that it will vote for the alternative closest its ideal point.
Our claim is that point 5 is a majority rule core point or the Condorcet
winner as a majority prefers it to any other point in the policy space.
To demonstrate this claim, we need to show that at least three voters
will block any other policy. First, consider a move to any policy in the
region marked W. Obviously, voter 5 will vote against any such move.
as will voters 1 and 3. Thus, 5’s ideal point is majority preferred to
any policy in region W . Similarly, voters 1,2, and 5 will vote against
moves to region X, voters 2,4, and 5 will vote against region Y , and
3,4, and 5 vote against region Z.

Insert Figure 4.3 Here

The reason voter 5’s ideal point is in the core is that voter 5 would
be the median voter over any two alternatives in that if she prefers x
to y at least two other voters will as well. Since this must also be
true for comparisons of the ideal points of other players, voter 5’s ideal
point must lie on the lines connecting opposing pairs of ideal points
(2-3 and 1-4). Thus, this condition (which we formalize in the next
section) is fragile. A slight deviation from the intersection of these
lines as in Figure 4.4 destroys the majority core. First, note that the
intersection cannot be a core point because 3,4, and 5 prefer 5’s ideal
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point to the intersection. Secondly, note that 5’s ideal point cannot
be a Condorcet winner, because there are a set of points Y 0 that are
preferred by 1,2, and 3. Therefore, the existence of a “median in all
directions” is a very restrictive assumption.

Insert Figure 4.4 Here
Given that the conditions on the existence of a majority rule core

are so restrictive, an obvious question to ask is whether majority rule
can at least reduce the set of possible outcomes by ruling some out as
undesirable. Recall that in our introductory example, the department
chair felt that it was reasonable to conclude that the department should
not hire in American or Formal Theory since both of those fields were
defeated by the three other fields. Thus, majority rule could eliminate
two options even though it created a cycle among the three top alter-
natives. In this example, C, I, and T represented a top cycle: a set of
alternative that defeat all alternatives outside the set, but over which
the aggregation rule is intransitive. Thus, perhaps while majority rule
does not produce a core, it can produce a small top cycle. Unfortu-
nately, this optimism is also unwarranted. Richard McKelvey showed
that with under sincere voting (given any pair the of alternatives, the
agent votes for the closest pair) and Euclidean preferences, the top cy-
cle was either the core or the entire set of alternatives. While we treat
this result more formally in the next section, the main intuition can be
seen in the example presented in Figure 4.5. Here we have three voters
with quadratic preferences. Assume that there is an initial status quo
policy a. To illustrate McKelvey’s result, it is sufficient to demonstrate
that pairwise majority voting can lead from point a to anywhere in the
policy space and then return to a. First, note that point b is majority
preferred to a since voters 1 and 2 prefer it. Continuing note that
2 and 3 prefer c to b, and 1 and 3 prefer d to c. Note that at each
subsequent stage of the agenda, the set of policies that are preferred to
the current status quo is getting larger. This allows us to reach points
further and further away from the voters’ ideal points. Finally, note
that 1 and 2 prefer the very distant point e to d. From e, we can either
return to a (the voter’s unanimously prefer a) or we can leverage e to
get to points further and further away.

Insert Figure 4.5 Here
As a positive methodology the study of preference aggregation rules

does not offer clear predictions. This is best exemplified by the result
fromMcKelvey showing that it is generally the case that any policy can
beat any other policy through a finite agenda. Some have interpreted
this result as a prediction of chaos, whereby the theory predicts that
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politics should be chaotic with observable cycles. This interpretation
is naive, as it attributes a positive prediction to results that state that
social choice does not generally offer predictions. A more reasonable
interpretation is that the results demonstrate the need to investigate
the political institutions within which collective choice is made. Un-
der this interpretation the conclusion is that a model that takes as
primitives only preferences and a preference aggregation rule may be
underspecified. The tools of non-cooperative game theory will allow
us to construct richer theories of collective choice.

3.1. Formal Analysis of the Plott andMcKelvey Results**.
In this section, we present a much more formal analysis of Plott and
McKelvey’s results about majority rule when preferences are multi-
dimensional. All of the following analysis is based on the following
social choice environment.

Condition 1. We assume X ⊂ Rd (d finite) is convex and agents
have strictly convex, continuous preferences on X.

IfX is compact then Theorems 3 and 4 of chapter 2 imply that each
agent has a unique ideal point yi in X. Instead of assuming that X
is compact, we will assume directly that each agent has an ideal point.
The assumption that preferences are strictly convex requires that the
upper contour sets are strictly convex sets. The classic special case of
Euclidean preferences, ui(x) = − kx− yik is convenient as in this case
the upper contour sets are spherical. If we assume that preferences
are Euclidean, we can specify exactly how utility changes as the policy
alternatives are varied.

Definition 4.9. If preferences are Euclidean then for any x ∈ X
the gradient vector ∇ui(x) = yi − x.

The gradient vector is a directed vector or line segment that points
away from the origin in the direction that agent i would most like policy
to move from point x.
The statement of Plott’s result also uses the notion of a pairing.

For a finite set A we will call a mapping p : A → A a pairing if it is
one-to-one. This means that each i in A is paired with exactly one j
in A. Now we can state Plott’s conditions.

Definition 4.10. In the spatial model with Euclidean preferences
the Plott conditions are satisfied at a policy x ∈ X if there exists a
pairing p(·) on the set L = {j ∈ N : yj 6= x} such that for every i ∈ L,
∇ui(x) = −λi∇up(i)(x) for some λi > 0.
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The intuition is that when the Plott conditions are satisfied at x
the set of agents L that do not have x as their ideal point, can be
paired so that each agent that wants to move in a particular direction
is offset by a particular agent that wants to move in exactly the opposite
direction. Since proponents of any change are paired with opponents, it
is impossible to build a majority coalition to overturn x. The following
result characterizes the relationship between the Plott conditions in the
spatial model with Euclidean preferences and the majority rule core.

Theorem 4.4. In the spatial model with Euclidean preferences and
n odd the point x in the interior of X is in the core Cf(ρ)(X) if and
only if the Plott conditions are satisfied at x.4

Even in the restrictive case of Euclidean preferences, it is clear that
the Plott conditions will not in general be satisfied. Suppose that
the conditions are satisfied for some x. This implies that for all i,
yi − x = −λi

¡
yp(i) − x

¢
. If we perturb yp(i) so that it lies on different

vector from the origin, this condition will not longer hold at x. More
precisely if we think of the space Rdn as the space of possible ideal
points of n agents with Euclidean preferences on the choice space Rd

then the subset of Rdn for which the Plott conditions are satisfied at
some x ∈ Rd is incredibly small. Specifically it contains no open sets
and thus has an empty-interior. Informally stated, if one imagined
randomly picking an arbitrary profile from this space the probability
of selecting one that satisfy the Plott conditions for some point would
be 0.
While the set of profiles with a core point is very small, for any

such profile there is another profile that is arbitrarily close and also
has a core point. In the exercises, we ask the reader to show that if
one consider small perturbations that also yield a core point, then the
core point is only perturbed a little.5

We may conjecture that even though the core is generally empty,
there is some other subset of the policy space which possesses nor-
matively desirable properties and is therefore a reasonable prediction.
One such concept is the following.

4A policy x is in the interior of X if there is an open ball B(x, ε) that is
contained in X.

5The assumption that preferences are Euclidean can be replaced by a differen-
tiability condition to produce a more general result.
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Definition 4.11. For a set X a profile ρ ∈ Rn and a preference
aggregation rule f the top cycle set Tf(ρ) is the set

Tf(ρ) = {x ∈ X : ∀y ∈ X\x,∃{a0, ..., at} ⊂ X

s.t. a0 = x, at = y t <∞ and ∀z < t az−1Paz}
The top cycle set is the set of points that can be reached from

any other point via a finite chain of strict preferences. That is if
x ∈ Tf(ρ) then for every y ∈ X\x we can select a finite number of
policies {a1, a2, ...., at} for which xPa1Pa2P....PatPy. The following
result indicates that either the Plott conditions are satisfied or the top
cycle set covers the policy space.

Theorem 4.5. In the spatial model either Cf(ρ)(X) is non-empty
or Tf(ρ) = X.

The implications of the last two theorems are striking. In the
spatial model with Euclidean preferences unless a knife-edged condition
holds (Plott conditions) any policy can be reached by any other policy
in a finite chain of strict preferences.

4. Manipulation of Choice Functions

As the previous section illustrated, majority rule very often fails
to provide sufficient guidance for making social choices. However,
even in conditions in which a majority core exists, agents may not
have the incentive to reveal their preferences truly so that the choice
function can be implemented. As Gibbard (1973) and Satterwaite
(1975) have shown, all social choice functions including majority rule
are susceptible to manipulation of agents acting strategically. We have
already seen one such example in the attempt of the formal theorists to
manipulate the Borda count by misrepresenting their preferences over
the fields. Such manipulation is also possible in voting. Consider
a voting agenda where x is first paired against y and then against z.
Assume that by majority vote, xPy, zPx, and yPz. Thus, if all voters
voted according to their actual preferences, x would defeat y and then
lose to z. However, voters who preferred x to y and y to z would have
an incentive to vote strategically for y (misrepresent their preferences
between x and y) in the first round so that y might win round 1 and
go on to defeat z.
To formalize the Gibbard-Satterwaite theorem, we need some ad-

ditional notation and definitions.

Definition 4.12. The social decision function is an onto function
G : Rn → X that generates an outcome given a preference profile.
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Thus, a social decision function takes a preference profile and pro-
duces an outcomes (as opposed to a preference ordering). The require-
ment that G be “onto” means that every profile produces an outcome
and that every outcome can be supported by some profile. Now we
can define manipulation.

Definition 4.13. G(ρ) is manipulable at ρ if and only if for some
i there exists ρ0 = {R1, ..., Ri−1, R

0
i, Ri+1, ..., Rn}

such that G(ρ0)PiG(ρ). G is non-manipulable if it is not manipulable
at any ρ.

Thus, we say that a social decision function is manipulable if a single
agent finds that it can change the outcome to one it prefers by reporting
something other than her true preferences. In the definition, agent i
changes the outcome from G(ρ) to G(ρ0) (an outcome she prefers) by
claiming preferences R0i rather than Ri. We can now state Gibbard
and Sattherwaite’s result.

Theorem 4.6. If there are more than three alternatives and G is
non-manipulable, then there is a dictator (i.e. for some i such that
G(ρ)Pix for all x and for all ρ ∈.Rn).

The outline of the proof is as follows. First assume that G is non-
manipulable. Then we can construct a transitive and IIA preference
ordering by applying G to all of X to get the most preferred outcome
and then applying G to the remaining elements of X to get the second
outcome, and so on. We can then show that this ordering satisfying
the weak Pareto criterion. Thus, by Arrow’s theorem, we must have
a dictator.
Now consider the details. Suppose that G is non-manipulable. For

step 1, let ρ and someB ⊆ X be such that for all i, x ∈ B, and y ∈ X/B
then xPiy. Thus, B is a set of alternatives that all agents prefer to all
alternatives not in the set. Our first claim is that the social decision
should be from this “best” set or that G(ρ) ∈ B. Suppose that this
were not true. Since G is onto, we can pick an alternative profile ρ0

such that G(ρ0) ∈ B. Then we can construct a series of alternatives:

y0 = G (ρ)

y1 = G(ρ|R01) = G(R01, ..., Rn)

yi = G(ρ|R01..., R0i) = G(R01, ...R
0
i, ...Rn)

yn = G (ρ0)

Now let k be the smallest integer such that yk ∈ B. Since agent k
prefers everything inside B to everything outside, she can get a better
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alternative by reporting R0k instead of Rk. This contradicts G being
non-manipulable. Thus, it must be true that G(ρ) ∈ B.
The next step is to create a aggregation rule. Let the highest ranked

element be x1 = G(ρ). Then move x1 to the bottom of everyone’s
preference ranking to create ρ2. Then let the second ranked choice be
x2 = G(ρ2). From step 1, we know that x2 6= x1. We can continue
this process until we have ranked all of the alternatives.
It is rather easy to see that the preference ordering will satisfy

the weak Pareto criterion, since at every stage the decision rule has to
choose an element of the “best” set for the constructed profile. So now
we need to show that our aggregation rule is IIA. Suppose that it were
not. Then there must be two profiles ρ and ρ0 and alternatives x, y
∈ X such that xRiy if and only if xR0iy for all i but that x f(ρ) y and y
f(ρ0) x. Let ρ(x, y) be the profile that agrees with ρ everywhere except
that x and y are moved to the top of everyone’s ordering. We claim
that G(ρ(x, y)) = x. Suppose it were not. Then let bρ be the profile
created by dropping alternatives to the bottom until G(bρ ) = x. Then
consider a sequence yi = G(ρ(x, y)| bR1, ..., bRi) so that yi is the social
decision created by switching the first i agents to the new profile. Note
that yn = G(bρ) = x and y0 = G(ρ(x, y)) = y since step 1 implies
G(ρ(x, y)) ∈ {x, y} . Similar to above, let k be the smaller integer
such that yk 6= y. If yk = x, then if xPky G can be manipulated by
switching from Rk to bRk. Alternatively, if yPkx, a switch from bRk

to Rk manipulates G. If yk 6= x, then consider smallest j > k such
that yj ∈ {x, y}. Using exactly the same logic as above, agent j can
manipulate G. So we have contradicted the assumption that G is
non-manipulable which implies that G(ρ(x, y)) = x.
Now consider a sequence zi = G(ρ(x, y)|R01(x, y), ..., R0i(x, y)). The

assumption of no IIA implies that zn = G (ρ0 (x, y)) = y and z0 =
G (ρ (x, y)) = x. Thus, as above, there must be some agent who prefers
y to x and can switch their preference from R(x, y) to R0(x, y) and
change the outcome from x to y, or an agent preferring x to y who
can switch from R0(x, y) to R(x, y) Thus, G is manipulable. This
contradiction implies that the preference ordering must be IIA. Thus,
by Arrow’s theorem, there must be a dictator for f and therefore a
dictator for G.
While essentially a negative result, this theorem does have impor-

tant implications about the study of politics. Perhaps the most im-
portant is that strategic behavior is likely to be ubiquitous in politics
in that mechanisms that are “strategy proof” typically do not exist.
Thus, the next chapter begins our study of strategic models of politics.
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5. Exercises

Exercise 4.1. Suppose players have the following preferences:

1 2
a e
b b
c d
d a
e c

(1) What are the Borda counts for each of the alternatives?
(2) How can player 1 do better by misrepresenting her preferences?
(3) How can player 2 do better by misrepresenting his preferences?
(4) Is there any combination of statements (not necessarily truth-

ful) for which the two players would not have an incentive to
change, ex post?

Exercise 4.2. Suppose there are three voters who are to decide on
an alternative via pairwise majority rule. If there are three alterna-
tives, all preferences are strict, and each voter has a different preference
ordering from the other two, what percentage of the possible combina-
tions of preferences result in a Condorcet winner? (Note that if two
individuals share a common preference ordering, their most preferred
must be a Condorcet winner. Why?)

Exercise 4.3. Assume that there are three voters with Euclidean
preferences in two dimensions with ideal points at (−1, 0), (0, 1), and
(1, 0) respectively. a. Construct an agenda to get from (0,0) to (2,2)
b. Construct an agenda to get from (0,0) to (5,5). c. Construct an
agenda to get from (0,0) to (-5,-5).Try to keep these agendas as short
as possible.

Exercise 4.4. Show that if ρ ∈ Rdn is a profile of ideal points for
which the Plott conditions are satisfied at some x ∈ Rd then for every
ε > 0 there exists a profile ρε ∈ B(ρ, ε) for which the Plott conditions
are not satisfied at any point for the profile ρε.

Exercise 4.5. Show that if ρ ∈ Rdn (n odd) is a profile of ideal
points for which the Plott conditions are satisfied at some x ∈ Rd then
for every ε > 0 there exists a δ > 0 such that if ρδ ∈ B(ρ, δ) and the
Plott conditions are satisfied for some point at the profile ρδ then the
Plott conditions are satisfied for a point x0 ∈ B(x, ε) by the profile ρδ.





CHAPTER 5

Games in the Normal Form

About 12.5 minutes into the broadcast, two murder suspects are
arrested by Detectives Logan and Briscoe. District attorney Adam
Schiff instructs assistant DA Jack McCoy to make the following offer
to each separately:

• Confess and provide evidence of first degree murder by your
accomplice. If she does not confess, you get a 1 year sentence
on a weapons charge. If she does confess as well, you both get
8 years for murder II.

• Hold out. If your accomplice turns state’s evidence, you will
serve 25 to life for murder I. If she holds out, you will get 4
years for voluntary manslaughter.

Assuming each suspect loses a unit of utility for each year in prison,
the following table shows the payoffs of each subject given all of the
possible outcomes. The rows represent the choices of suspect 1 while
the columns represent the actions of suspect 2. Each pair of numbers
represents the payoffs for suspect 1 and suspect 2 respectively for each
combination.

Table 5.1: The Prisoner’s Dilemma
1\2 Hold Out Confess

Hold Out -4,-4 -25,-1
Confess -1,-25 -8,-8

Note that the situation is strategic in the sense that the outcome
of any action by suspect 1 depends on the choices of suspect 2 and
vice versa. What should we expect the suspects to do? Collectively,
they would like to hold out. If they both hold out, the total jail time
would be only eight years, far less than any other outcome. However,
unless they can reach some kind of binding agreement, its clear that
the individual incentives of the suspects will preclude this outcome.
Suppose that suspect 1 were to hold out, then suspect 2 would recognize
that she could then do better by confessing, reducing jail time from 4
years to 1. Suspect 1 would have the same epiphany, making the

71
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“socially optimal” agreement impossible. In fact, both suspects will
recognize that she will do better by confessing regardless of the other’s
actions. Thus, they both confess, leading to 16 total years of jail.
Thus, individual rationality leads to socially inferior outcomes (where
society refers to the suspects, the DA and the police presumably prefer
the outcome).1

In this game, the well-known “Prisoner’s Dilemma”, it is fairly
straightforward to deduce what strategies rational actors will choose.
However in other strategic situations, the predictions are more sub-
tle. Consider the following game which we call the “Terrorist Hunt.”
Suppose that there are two agencies, the FBI and the CIA, which are
responsible for investigating and apprehending terrorist suspects. We
assume that there are two types of suspects, kingpins and operatives.
Both agencies prefer capturing kingpins to capturing operatives to cap-
turing no suspects. However, to capture a kingpin, the two agencies
must cooperate by dedicating resources to a joint effort. Thus, if one
agency fails to cooperate in the investigation, the other agency will fail
to capture any suspects. On the other hand, each agency can capture
an operative simply be acting on its own. Given this setting, we can
now illustrate the strategic situation that each agency faces in deciding
whether to go after the kingpin or the operative.

Table 5.2: The Terrorist Hunt
FBI\CIA Kingpin Operative
Kingpin 2,2 0,1
Operative 1,0 1,1

The rows of this matrix represent the possible strategies of the FBI
(hunt kingpin or hunt operative) while the column represents those of
the CIA. For both agencies, we have assigned a utility of 2 for the
kingpin, 1 for the operative, and 0 for failing to capture either. Let’s
begin with the FBI’s decision. Unlike the Prisoner’s dilemma, the
FBI’s best choice depends on the CIA’s choice. If the CIA hunts the
kingpin, the FBI gets 2 from cooperating on that search versus 1 for
hunting an operative by itself. However, if the CIA strikes out on its
own, the FBI gets 0 from hunting the kingpin while it could generate
1 by pursuing an operative. Thus, the FBI’s choice depends on what
it believes the CIA will do and vice versa. So what is it reasonable

1Not to leave the reader in limbo, here is a quick summary of the rest of the
episode. The confessions are thrown out on a technicality by an Upper Westside
judge. The episode ends with a pithy piece of wisom by Shiff just as McCoy pours
himself an 18 year old Scotch.
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for each to believe? A key development in the study of strategic
interaction was John Nash’s characterization of rational behavior in
such situations. In Nash’s formulation, each agency should choose
strategies that are “best responses” to the action of the other agency.
If both agencies pursue such a course, the outcome is a best response
to a best response. Since neither agency has a incentive to change it
strategy, such an outcome is known as a Nash equilibrium.
To see whether an outcome is Nash equilibrium, it suffices to show

that both agencies are doing their best given the actions of the other
agencies actions. So consider whether the outcome where both agencies
hunt the kingpin is a Nash equilibrium. Given that the CIA is hunting
the kingpin, the best choice of the FBI is to hunt the kingpin. Similarly,
the CIA’s best response to the FBI’s choice of the kingpin is to hunt
the kingpin itself. Thus, both agencies pursuing the kingpin is a Nash
equilibrium. However, this is not the only Nash equilibrium of the
game. If the CIA decides to hunt the operative, the best that the FBI
can do is to also settle for the operative. Since the CIA also prefers
the hunt the operative when the FBI does, both agencies tracking an
operative is also a Nash equilibrium.2 While Nash’s solution does not
lead to a single prediction, it does rule out some outcomes. A situation
where one agency hunts the kingpin while the other tracks an operative
is not a Nash equilibrium since the agency hunting the kingpin would
do better by switching to a search for an operative. Conversely, the
agency hunting an operative would like to deviate from its strategy to
search for the kingpin.
In the remainder of this chapter, we formalize and extend the con-

cepts and issues raised by these examples.

1. The Normal Form

The first issue that one encounters when using game theory to model
political phenomena is the question of how to represent the strategic
situation. We begin with the simplest representation of a strategic
situation: the normal form representation with complete and perfect
information. Such a representation is based on the following elements:

(1) Agents: We let N represent the set of agents. When we wish
to refer to an arbitrary agent, we use the notation i ∈ N . We
also use the symbol −i ∈ N (read “not agent i” ) to refer to
all agents other than i.

2While we defer the discussion of such possibilities, there is also a third equilib-
rium where each agency puruse the kingpin with probability .5 and the operative
with probability .5.
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(2) Pure Strategies: A pure strategy is an agent’s plan of action
such as “confess” or “hunt an operative” in our motivating
examples. In a game with a single interaction, as our ex-
amples, a strategy is simply an action. However, in a game
with multiple interactions, a strategy is specifies the action
to be taken at each stage of the game. In a normal form
representation, we must specify the set of pure strategies for
each player which we denote Si for each i ∈ N . An arbitrary
strategy by agent i is given by si ∈ Si. Given the strategy
sets for each agent, we can generate the set of all possible
strategy profiles S by computing all possible combinations of
strategies. Formally, S ≡ ×i∈NSi. A profile is then a vector
s = (s1, ..., si, ..., sn) ∈ S. By S−i ≡ ×j∈N\iSj we denote the
space of strategies for every player except i. To economize on
notation, we often represent s as (si, s−i). Below we discuss
extensions of the definition of strategies which allows agents
randomize over pure strategies.

(3) Payoffs: A normal form representation requires a specification
of a von Neumann-Morgenstern utility function for each player
over the set of strategy profiles or ui(s) : S → R1. Sometimes
the utility function for i is denoted ui(si, s−i). As in chapter
3, the functions ui(·) are Bernoulli utility functions, and given
any lottery over S the agent calculates her expected utility
under the lottery.

An interpretation of a normal form game is that at period 1 each
player chooses their strategy si ∈ Si and in period 2 the agents receive
ui(s) where s = (s1, ..., sn). We will see that games with more periods
can actually be reinterpreted as very large normal form games.
Accordingly a normal form game is completely defined by

hN, {Si, u(·, ..., ·)}i∈ni . We sometimes use the shorthand hN,S, ui to
represent a game where u without a subscript represents the vector
of utility functions (u1(·), ..., un(·)). Some simple but quite interesting
games involving two players can be represented as matrices.
To cement ideas, we know show that our two motivating examples

can be fully described using the normal form. First consider the Pris-
oner’s dilemma. Clearly N = {player 1, player 2}, S1 = S2 = {hold
out, confess}. We can also write the payoff functions as
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ui(si, s−i) =

⎧⎪⎪⎨⎪⎪⎩
−8 if si = s−i = confess
−4 if si = s−i = hold out
−1 if si = confess & s−i = hold out
−25 if si = hold out & s−i = confess

.

Similarly, the Terrorist Hunt can be represented as N = {CIA, FBI},
S1 = S2 = {hunt kingpin, hunt operative} and

ui(si, s−i) =

⎧⎪⎪⎨⎪⎪⎩
2 if si = s−i = hunt kingpin
1 if si = s−i = hunt operative

1 if si = hunt operative & s−i = hunt kingpin
0 if si = hunt kingpin & s−i = hunt operative

.

Note that we were able to represent both of these normal forms with
matrices. For two agent games, the relationship between the normal
form and a game matrix generalizes to:

Table 5.3: Generic Normal Form Game
1\2 s21 s22 · · · s2k
s11 u(s11, s21) u(s11, s22) · · · u(s11, s2k)
s12 u(s11, s21) u(s12, s22) · · · u(s12, s22)
...

...
...

. . .
...

s1l u(s1l, s21) u(s1l, s22) · · · u(s1l, s2k)

where N = {1, 2} , S1 = {s11, ..., s1l}, and S2 = {s21, ..., s2k} .
Representing a normal form with more than two players in a matrix

is more difficult since it is difficult to represent the strategy combina-
tions in two dimensions. However, sometimes it is useful to repre-
sent three player games using the following trick. Suppose we ex-
tended the terrorist hunt to include a third agency, the National Se-
curity Agency (NSA) whose strategy set is the same as the other two
S3 = {hunt kingpin, hunt operative} . We assume that capturing the
kingpin requires cooperation by at least 2 agencies, but that each can
capture an operative on its own so that the payoff function for the FBI
is now:

u1(s1, s−1) =

⎧⎨⎩ 2 if s2 = kingpin or s3 = kingpin
1 if s1 = operative
0 if s2 = operative & s3 = operative

.

Now consider the following pair of matrices:
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Table 5.4: Game if NSA Hunts Kingpin
FBI\CIA Kingpin Operative
Kingpin 2,2,2 2,1,2
Operative 1,2,2 1,1,0

Table 5.5: Game if NSA Hunts Operative
FBI\CIA Kingpin Operative
Kingpin 2,2,1 0,1,1
Operative 1,0,1 1,1,1

The top matrix shows the payoff triples corresponding the strategy
combinations where the NSA hunts the kingpin while the lower matrix
are those for which the NSA hunts the operative. In general three
player normal form games can be represented by matrices of payoff
triples corresponding to each possible strategy for player 3.

2. Solutions to Normal Form Games

The goal of game theory is to predict which element of S will be
chosen by the agents. In the the Prisoner’s Dilemma we argued for the
plausibility of {confess, confess} and that either {kingpin, kingpin} or
{operative, operative} would be the result of the Terrorist Hunt. Now
we layout the general principles that lay behind these predictions.

2.1. Elimination of Dominated Strategies. A reasonable first
principle for rational behavior in games is that agents should not play
a strategy for which there exists an alternative strategy that raises
her payoffs for all possible strategies by her opponent. To make this
criteria more concrete, recall the Prisoner’s dilemma of Table 1. The
essence of the solution discussed in the introduction is that player 1
will never play “hold out” since it provides strictly less utility than
“confess” for both possible choices by 2. Thus, we say that “hold out”
is strictly dominated for player 1 by confess and predict that she will
not play it. Similarly, “hold out” is strictly dominated for player 2
as well. Thus, the only strategy combination that does not contain
strictly dominated strategies is {confess, confess}.

Definition 5.1. (Strict dominance in pure strategies) A strategy
si is strictly dominated by s0i for player i iff ui(si, s−i) < ui(s

0
i, s−i) for

all s−i ∈ S−i.

Definition 5.2. (Elimination by Strict Dominance in Pure Strate-
gies) A strategy profile s = (si, s−i) is a consistent with elimination by
strict dominance if si is not strictly dominated for any i ∈ N.
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It is also possible to tighten the predictions of elimination by strict
dominance to note that it can be iterated as in the following example.
Suppose that we have a normal form game represented by the following
matrix:

Table 5.6
1\2 Left Middle Right
Up 1,0 1,2 0,1
Down 0,3 0,1 2,0

In this game agent 1 has no strictly dominated strategies. However,
for agent 2, Right is dominated by Middle since Middle generates 2
versus 1 against Up and 1 versus 0 against Down. If agent 1 recognizes
that agent 2 will not choose Right, he will perceive the game as

Table 5.7
1\2 Left Middle
Up 1,0 1,2
Down 0,3 0,1

In this reduced form, Down is now dominated for agent 1 by Up
(payoff of 1 versus 0 for any strategy by agent 2). Since agent 2
knows that agent 1 will play Up, she prefers “Middle”. Thus, {Down,
Middle} is the solution consistent with iterated elimination of strictly
dominated strategies.

Definition 5.3. (Iterated elimination of strictly dominated strate-
gies) Given a normal form game Γ0 = hN,S0, u0i the process of it-
eratively deleting strictly dominated strategies is attained through the
following algorithm: for t = 1, 2, ....
In period t arbitrarily select a player it ∈ N\it−1 and remove from

St−1
i each strategy that is strictly dominated in the game Γt−1 Call the
set of strategies that survive St

i . Let S
t
j = St−1

j for j ∈ N\it and let u0z
be the restriction of uz to St for each z ∈ N.
If at τ there is no iτ ∈ N having a strictly dominated strategy in

the game Γτ−1 then call the set Sτ−1 the set of outcomes that survive
iterative deletion of strictly dominated strategies.

It can be shown that regardless of what sequence of players is cho-
sen the same set of actions will be reached. A justification for this
procedure is to consider agents who reason in the following manner.
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I know that my opponents will not use strictly domi-
nated strategies, and I know that my opponents know
that I will not use strictly dominated strategies. Given
this we are all really choosing from the smaller strategy
space that survives the first n iterations. But I know that
my opponents will not use a strategy that is strictly dom-
inated in this game, and I know that my opponents know
that I won’t play a strategy that is strictly dominated in
this new game,.............ad infinitum.

While based on a much stronger premise, we can also use the idea
of weak dominance to generate predictions from games. A strategy
is weakly dominated if there is some other strategy that produces at
least as high payoffs against all opponents strategy profiles and a higher
outcome against at least one profile.

Definition 5.4. (Weak dominance in pure strategies) A strategy
si is weakly dominated by s0i for player i iff ui(si, s−i) ≤ ui(s

0
i, s−i) for

all s−i ∈ S−i and ui(si, s−i) < ui(s
0
i, s−i).at least one s−i ∈ S−i.

The definition of elimination by weak dominance is analogous to
that of elimination by strict dominance. An important application of
elimination by weak dominance in political science is in majority rule
voting games. Assume that a set of n (odd) agents is voting between
two candidates D and R. Each agent gets a payoff of 1 if her preferred
candidate wins and 0 otherwise. We will also define the strategy sets
so that si = 1 is a vote for D and si = 0 is a vote for R. Since the
choice is by majority rule, the payoff for an agent who prefers D is

uD =

½
1 if

X
si >

n+1
2

0 otherwise
and the payoff for an agent who prefers R is 1 − uD. with this setup
it is easy to see that no strategies are strictly dominated. Unless
exactly n−1

2
agents choose si = 1 and exactly n−1

2
choose si = 0, an

agent’s utility is not effected by her individual choice. Thus, under
most strategy profiles agents do not have strict prefers. However, since
agents do have a strict preference at opponent’s profiles generating ties,
voting for the preferred outcome weakly dominates voting for the lesser
candidate. Thus, if we eliminate weakly dominated strategies, each
agent votes for her preferred candidate and the candidate preferred by
a majority wins.
As attractive as solutions based on dominance are, they suffer from

a number of problems. Perhaps the most important is that they have
little bite in a number of games. Neither version of the Terrorist Hunt
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contain dominated strategies. Thus, all strategy profiles are plausible
if we only impose a dominance criterion. Secondly, iterated dominance
imposed strong rationality requirements on the agents. The solution
to the game described in Table 6 requires that agent 2 know for certain
that agent 1 will not play Up because he is certain that agent 2 will not
play Right. Any slip in this logical chain leads to other outcomes. On
these grounds, elimination by weak dominance is especially vulnerable
since the agents may only have a strict preference against a very small
set of profiles and be indifferent against the rest. Thus, the prediction
of weak dominance arguments may be based agents basing decisions
on very low probability occurrences.

2.2. Nash Equilibrium. As we discussed in the introduction,
John Nash made a fundamental contribution to game theory by de-
veloping a solution for normal form games that can be applied to a
very large class of models. Nash’s solution requires that for all i ∈ N
agent i’s strategy si be a best response to the the strategies played by
the other players s−i.
One of the most important concepts in game theory is the best

response correspondence.3 The best response to an opponent’s profile
s−i is simply the set of strategies that maximize an agent’s utility when
played against s−i

Definition 5.5. The best response correspondence for agent i ∈ N
is a mapping bi(s−i) : S−i →→ Si defined as

bi(s−i) = {si ∈ Si : ui(si, s−i) ≥ ui(s
0
i, s−i) for every s0i ∈ Si}for

every s−i ∈ S−i.

To make these abstract definitions, consider the best response cor-
respondences for our examples. In the Prisoner’s dilemma, the best
responses are:

b1(confess) = {confess}
b1(hold out) = {confess}
b2(confess) = {confess}

b2(hold ou 6 t) = {confess}

3For a discussion of correspondences, see the Mathematical Appendix.
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Similarly, the best response correspondences for the two agency version
of Terrorist Hunt are

b1(kingpin) = {kingpin}
b1(operative) = {operative}
b2(kingpin) = {kingpin}

b2(operative) = {operative}
In these examples, the best response is a point, but in many cases it
will be a set of strategies. Recall the majority voting game of the
last section. Unless the opposing profile generates an exact tie, voting
for either candidate is a best response. Thus, formally best response
correspondence for agent i preferring D is

bi(s−i :
P

s−i =
n− 1
2
) = {1}

bi(s−i :
P

s−i 6=
n− 1
2
) = {0, 1}

Given the definition of the best response correspondence, we can define
a Nash equilibrium as a strategy profile in which every agent is playing
an element of her best response set against the strategies of the other
agents.

Definition 5.6. A Nash equilibrium (in pure strategies) to a nor-
mal form game is a strategy profile (s∗) satisfying the condition: for
every i ∈ N

s∗i ∈ bi(s
∗
−i)

We can also state the definition without reference to the best re-
sponse correspondence.

Definition 5.7. A Nash equilibrium (in pure strategies) to a nor-
mal form game is a strategy profile (s∗) satisfying the condition: for
every i ∈ N

ui(s
∗
i , s

∗
−i) ≥ ui(s

0
i, s

∗
−i) for every s

0
i ∈ Si.

The concept of a Nash equilibrium (NE) is deceptively simple. We
require that agents correctly conjecture what the other players will do
and that they play a best response to this conjecture. An alternative
interpretation based on the second definition is that at a strategy profile
which is a NE no player has an incentive to unilaterally change her
strategy.
Now we can apply these definitions to our examples.
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(1) The Prisoner’s Dilemma: Since {confess} is the sole element
of the best response set for both agents against all outcomes,
the unique Nash equilibrium is {confess, confess} .

(2) The Two Agency Terrorist Hunt: Since bi(kingpin) = {kingpin}
for both agencies, {kingpin, kingpin} is a Nash equilibrium.
Similarly, the fact that bi(operative) = {operative} suggests
that {operative, operative} is also a NE.

(3) Three Agency Terrorist Hunt: First verify that the best re-
sponse correspondence is

bi(kingpin, kingpin) = {kingpin}
bi(operative, kingpin) = {kingpin}
bi(kingpin, operative) = {kingpin}

bi(operative, operative) = {operative}
Using the first definition, it is easy to see that bi(kingpin, kingpin) =
{kingpin} implies that {kingpin, kingpin, kingpin} is a Nash
equilibrium. bi(operative, operative) = {operative} implies
that {operative, operative, operative} is a NE. But the fact
that bi(operative, kingpin) = {kingpin} and bi(kingpin, kingpin) =
{kingpin} imply that there are no Nash equilibria where there
are just two agencies pursuing the kingpin, even though coop-
eration of two agencies is sufficient to capture him.

4. Majority Voting Game: Here we claim that almost any strat-
egy profile is a Nash equilibrium. First consider any pro-
file such that

P
si <

n−1
2
or
P

si >
n+1
2
. This implies that

bi(s) = {0, 1} for all i. Thus, each such profile is a NE. Now
consider

P
si ∈

£
n−1
2
, n+1

2

¤
. Suppose that

P
si =

n+1
2
. This

profile is a Nash equilibrium if and only if all agents choosing
si = 1 prefer D. Suppose that this were not true and agent
i choose si = 1 but prefers R. However, since

P
s˜i =

n−1
2
,

bi (s˜i) = {0}. Thus, such an s is not a NE. Similarly, ifP
si =

n−1
2
, s is a NE if all agents choosing si = 0 prefer

R. Thus, the set of NE includes every profile except those in
which one candidate wins by a bare majority which includes a
voter who prefers the losing candidate.

It is interesting to note the similarity and differences between the set
of Nash equilibria and the predictions of iterated dominance arguments.
In one case, the Prisoner’s dilemma, the predictions are the same. In
the Terrorist Hunt games, the set of Nash equilibria is smaller than the
set of outcomes consistent with elimination of dominated strategies.
However, in the case of majority rule voting, the set of Nash equilibria
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is smaller than the set of strategies surviving strict dominance but
much larger than the unique prediction of the elimination of weakly
dominated strategies.
The following theorems establish the exact link between NE and

profiles surviving iterated dominance.

Theorem 5.1. If a strategy profile (s∗1, ..., s
∗
N) is a Nash equilibrium,

then none of its strategies can be eliminated through iterated dominance.

Proof. Suppose the theorem is false. Let s∗i be the first of the
strategies in the equilibrium profile to be eliminated. That it is elim-
inated requires that ui(s∗i , s−i) < ui(si, s−i) for some si and for all s−i
that have not been eliminated. Since by assumption s∗−i has not been
eliminated, ui(s∗i , s

∗
−i) < ui(si, s

∗
−i). This violates the assumption that

(s∗1, ..., s
∗
N) is a Nash equilibrium. ¤

Theorem 5.2. If only the strategy profile (s∗1, ..., s
∗
N) survives iter-

ated elimination of strictly dominated strategies then it is the unique
pure strategy Nash equilibrium.

Proof. Uniqueness follows from the pervious theorem as any Nash
equilibrium must survived iterated elimination. Now we show that the
remaining profile must be a Nash equilibrium. Suppose (s∗1, ..., s

∗
N) is

not a Nash equilibrium. Then there exists s0i such that ui(s
∗
i , s

∗
−i) <

ui(s
0
i, s

∗
−i) but s

0
i is eliminated by weak dominance. Let si be the

strategy that eliminates s0i. If si = s∗i , we have a contradiction. Assume
that si 6= s∗i . Then ui(s

0
i, s

∗
−i) < ui(si, s

∗
−i) since si eliminates s

∗
i . We

can continue this process, no more than a finite number of times until
si = s∗i . ¤

In all of our examples, there is at least one Nash equilibrium. How-
ever, it is quite possible that there will be no strategy profiles satisfying
the requirements of Nash equilibria. To see this consider the following
game. Suppose that there are two armies, an defending army (D) and
an invader (I). The invading army must decide whether to invade
through the mountains M or to come through the plainsP . Similarly,
the defenders must decide where to fortify its defenses in the mountains
or those in the plains. If the invader attacks an undefended area it
wins a payoff of 1, however it loses 1 if it attacks a fortification. Sim-
ilarly, the defenders get 1 by correctly predicting the direction of the
attack and loses 1 otherwise. Thus, this normal form game, known as
Colonel Blotto, can be represented by the following matrix.
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Table 5.8: Colonel Blotto
D\I M P
M 1,-1 -1,1
P -1,1 1,-1

Note that bD (M) = {M}, bD (P ) = {P} , bI (M) = {P}, and
bI (P ) = {M} . A Nash equilibrium requires that there exist {sD, sI}
such that bI (sD) = sI and bD (sI) = sD. Note that it is impossible for
the best response correspondences of this game to satisfy these condi-
tions. For any pair of strategies, one agent will have an incentive to
choose a different one. Absent a Nash equilibrium (or any restrictions
imposed by dominance), we lack a prediction for how this game will be
played.
In applications one generally defines a game and seeks to character-

ize the set of NE (or some other set of strategy profiles). Accordingly
in characterizing the equilibrium set, one is interested in existence and
uniqueness. From the perspective of applied researchers, it is generally
the case that a unique NE is most desirable as it means that we are
analyzing a well specified model that makes clean predictions. The
case of multiple equilibria is less desirable as it may mean that the
model yields ambiguous predictions. The case of no equilibria may be
very unsatisfactory as the model makes no predictions.

3. Application: The Hotelling Model of Political
Competition

To provide an additional example of Nash equilibria, we turn one
of the most widely used models in political game theory: the Hotelling
(1927) model of political competition which was extended by Downs
(1957). Suppose that a small town wants to decide where to build a
school. Its citizenry are stretched out evenly along a one mile stretch
of road and would like the school to be built as close to their homes as
possible. Thus, we assume that the voter’s ideal points are distributed
uniformly over [0, 1]. The decision will be made following an election
where two candidates compete for office by campaigning on promises
of the school’s location. The winning candidate builds the school at
the promised location and receives a payoff of 1. The losing candidate
gets −1. In the case of a tie, we assume that the election is decided
by a coin toss. To keep the discussion simple, we will assume that
the voters are not strategic agents in the game, but vote for the closest
candidate.
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Given our setup, the candidate’s strategy sets are S1 = S2 = [0, 1] .
Given that the voters vote for the closest candidate, we can compute
the vote shares for both candidates for any strategy profile (s1, s2) .
Since the voters are distributed uniformly, the number of voters in any
interval is equal to width of that interval. So if s2 > s1, all voters to
the left of s1+s2

2
vote for candidate 1 and her share is thus s1+s2

2
. The

remaining 1− s1+s2
2

voters vote for candidate 2. Conversely, if s1 > s2,
candidate 2 receives a vote share s1+s2

2
while candidate 1 gets the rest.

Given the candidate’s utilities for winning, their payoff functions over
strategies are:

u1(s1, s2) =

⎧⎨⎩ 1 if s1 < s2 and s1+s2
2

> .5 or if s1 > s2 and s1+s2
2

< .5
0 if s1 = s2 and s1+s2

2
= .5

−1 if s1 < s2 and s1+s2
2

< .5 or if s1 > s2 and s1+s2
2

> .5

and
u2(s1, s2) = −u1(s1, s2)

Our claim is that the unique Nash equilibrium is s1 = s2 = .5. To
demonstrate, we begin by computing the best response functions. We
start with candidate 1. Suppose that s2 < .5, then candidate 1 can win
for sure by choosing any platform generate a vote share of .5 or more.
Thus, b1(s2) = (s2, 1− s2). For s2 > .5, similar calculations produce
b1(s2) = (1− s2, s2) . If s2 = .5, candidate 1 can at best generate a
tie by choosing .5 as well. Thus, b1(.5) = .5. Since candidate 2’s
situation is entirely symmetric, her best response correspondence is

b2 (s1) = (s1, 1− s1) if s1 < .5
b2 (s1) = (1− s1, s1) if s1 > .5

b2 (s1) = s1 if s1 = .5

That s∗1 = s∗2 = .5 is a NE follows trivially since b1(.5) = .5 and
b2(.5) = .5. The trick is to show that it is the only one. Suppose
to the contrary that s∗1 = s∗2 6= .5. However, this cannot be a NE
since b1 (s∗2) does not include s

∗
2 = s∗1. Now suppose s∗1 < s∗2. Now

b1 (s
∗
2) = (1− s∗2, s

∗
2) while b2 (s

∗
1) = (s

∗
1, 1− s∗1) . Putting all of these

conditions together, a NE requires that 1−s∗2 < s∗1 and s
∗
2 < 1−s∗1 which

imply the contradictory inequalities that s∗2 > 1− s∗1 and s∗2 < 1− s∗1.
Since the s∗1 > s∗2 is analogous, we have established the uniqueness of
s∗1 = s∗2 = .5 as a Nash equilibrium.
A more intuitive proof of our claim follows from our second defi-

nition of Nash equilibrium (a strategy profile for which no agent has
a strict preference to deviate). Clearly, no candidate will defect from
s∗1 = s∗2 = .5 payoffs would fall from .5 to −1. Now consider any other
possible equilibrium (s∗1, s

∗
2) . If one candidate wins in this equilibrium,
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the other candidate move to .5 and at least generate a tie. Thus, any
other equilibrium must generate a tie. However, unless s∗1 = s∗2 = .5,
either candidate can move to .5 and win for sure. Thus, s∗1 = s∗2 = .5
is the only NE.
Finally, we note that the same outcome is generated by applying

elimination of weakly dominated strategies. Each candidate generates
no worse than a tie by choosing .5. The tie occurs only if the opponent
chooses .5 as well. Against this profile anything other platform will
lose. Thus, si = .5 weakly dominates all other strategies.

3.1. Vote Maximizing Candidates. Suppose instead of max-
imizing their chance of winning, each candidate maximizes his vote
share. Thus, the payoffs are

u1(s1, s2) =

⎧⎨⎩
s1+s2
2

if s1 < s2
.5 if s1 = s2

1− s1+s2
2

if s1 > s2

and
u2(s1, s2) = 1− u1(s1, s2)

Our claim is that s∗1 = s∗2 = .5 is again the unique Nash equilibrium.
Again, let’s start with the best response correspondences. Suppose
that s2 < .5, candidate 1 would like to choose the smallest platform
greater than s2. However, since the strategy sets are continuums, no
such platform exists. Similarly, if s2 > .5, candidate 1 would like to
choose the smallest platform less than s2 which does not exist either.
Candidate 2 faces the same situation so that bi (s−i 6= .5) = φ. Now
consider the best response to s2 = .5. candidate 1 gets .5 for propos-
ing .5 generating the tie and a strictly lower vote share for any other
platform. Thus, .5 is the best response. Since candidate 2 faces the
same incentives, bi (s−i = .5) = .5. So clearly s∗1 = s∗2 = .5 is a Nash
equilibrium. Since the best response sets for any other strategy pair
are empty, this is also the unique NE.

3.2. Ideological Candidates. We now consider one last version
of the Hotelling model. In this version, candidate are ideological in
that they care about the policy implemented by the winning candidate.
We will assume that candidate 1 wants the school to be as close to 0
as possible so that her utility from the winning outcome x is − |x| .
Similarly, candidate 2 would like the outcome to be as close to 1 as
possible and so gets a utility of − |1− x| from a school located at x.
In the case of a tied election, the voters flip a coin and the winner gets
to implement her platform. Given that the candidates’ incentives to
move policy to the extremes, it might seem that the outcomes would
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no longer be located at the median voter. However, this is not the
case as we show once again that s∗1 = s∗2 = .5 is the unique NE.
First let us specify the payoff functions for each candidate.

u1(s1, s2) =

⎧⎨⎩ − |s1| if s1 < s2 and s1+s2
2

> .5 or if s1 > s2 and s1+s2
2

< .5
−.5 · |s1|− .5 · |s2| if s1 = s2 and s1+s2

2
= .5

− |s2| if s1 < s2 and s1+s2
2

< .5 or if s1 > s2 and s1+s2
2

> .5

and

u2(s1, s2) =

⎧⎨⎩ − |1− s1| if s1 < s2 and s1+s2
2

> .5 or if s1 > s2 and s1+s2
2

< .5
−.5 · |1− s1|− .5 · |1− s2| if s1 = s2 and s1+s2

2
= .5

− |1− s2| if s1 < s2 and s1+s2
2

< .5 or if s1 > s2 and s1+s2
2

> .5

Now consider the best response functions. We begin with candidate 1.
If s2 < .5, no proposal less than s2 defeats s2. Thus, candidate 1’s best
response is to choose s2 or a proposal that loses to s2. This implies that
b1 (s2 < .5) = {s2} ∪ (1− s2, 1] . Alternatively, if s2 > .5, candidate 1
will choose the smallest platform that defeats s2. However, just as in
the last section, such a platform does not exist so that b1 (s2 > .5) = φ.
By similar arguments, b2 (s1 > .5) = {s1}∪[0, 1− s1) and b2 (s1 < .5) =
φ. Finally, consider the best response to si = .5. Any proposal by the
other candidate loses for sure generating a utility of .5. Responding
with .5 leads to a lottery over s1 = s2 = .5 which has an expected value
of .5 for both candidates. Thus, bi (.5) = [0, 1] .
Given these correspondences, it is easy to see that s∗1 = s∗2 = .5 is a

Nash equilibrium since .5 ∈ bi (.5) for both candidates. Now we show
uniqueness. It’s clear that since b1 (s2 > .5) = φ and b2 (s1 < .5) =
φ the only possible candidates for NE are s∗1 > .5 > s∗2. However,
this condition in conjunction with b1 (s2 < .5) = {s2} ∪ (1− s2, 1] and
b2 (s1 > .5) = {s1}∪ [0, 1− s1) implies that s∗1 > 1−s∗2 and s∗2 < 1−s∗1.
Since these last two inequalities are inconsistent, s∗1 = s∗2 = .5 is the
only possible NE.

4. Existence of Nash Equilibria

As we saw in our Colonel Blotto example, there is no guarantee
that a Nash equilibrium in pure strategies will exist. In this section,
we explore the conditions necessary for the existence of Nash equilibria.
First we consider a set of sufficient conditions for equilibria to exist

in pure strategies. Before doing so we need an additional definition to
describe an important property payoff functions: quasi-concavity.

Definition 5.8. A function f(x) : X → R1 with X a convex set is
strictly quasi-concave if for any t ∈ R1, x 6= y ∈ X and λ ∈ (0, 1) with
f(x) ≥ t and f(y) ≥ t it is the case that f(λx+ (1− λ)y) > t.
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Alternatively, a function is strictly quasi-concave if its upper con-
tour sets are convex. Since we have already shown strictly convex
preferences have singleton maximal sets (when the sets are non empty).
This means that if a game has convex S and utility functions ui(si, s−i)
that are strictly quasi concave in si for each s−i ∈ S−i the best response
correspondence will be a function (i.e. a single valued correspondence).
This feature of the best response correspondences guarantees the exis-
tence of a NE. In the next subsection we prove the following result.

Theorem 5.3. If the normal form game hN,S, ui satisfies the fol-
lowing conditions:
(1) Si is a convex and compact subset of a Euclidean space for each

i ∈ N.
(2) ui(si, s−i) : S → R1 is a continuous function for each i ∈ N
(3) for every i ∈ N and every s0−i ∈ S−i the function ui(si, s

0
−i) :

Si → R1 is strictly quasi concave
a Nash Equilibrium exists.

As useful as the previous result, it is obviously restrictive in that
many games will not satisfy its assumptions. An alternative approach
is to consider mixed strategies. A mixed strategies is a randomization
over the pure strategies. We will denote a mixed strategy as σi and
use σi (si) to denote the probability that agent i chooses strategy si.
The set of mixed strategies for player i will be the set of probability
distributions over Si which we denote.∆i = ∆(Si).
Thus, a game in mixed strategies is very much like a game in pure

strategies except that each agent chooses σi ∈ ∆i rather than si ∈ Si
and the players evaluate strategies according to expected utility over
the lotteries induced by the mixed strategies. The following is a formal
definition of a game in mixed strategies.

Definition 5.9. Given a normal form game Γ = hN,S, ui the
mixed extension game Γm =hN,∆, umiis constructed as follows: ∆i =
∆(Si) with an arbitrary strategy σi ∈ ∆i for all i ∈ N and ∆ = ×i∈N∆i

with σi(si) denoting the probability that mixed strategy σi assigns to
pure strategy si. The expected utility function, Ui(σi, σ−i) : ∆→ R1 is
defined as

Ui(σi, σ−i) =
X

s−i∈S−i

X
si∈Si

ui(si, s−i)σi(si), σ−i(s−i) for all i ∈ N.

Since the mixed extension of a normal form game is itself a normal
form game, our definition of NE applies directly to mixed extensions.
To understand the mechanics of mixed strategy games, recall the

Colonel Blotto game. Suppose now that each side can choose lotteries
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over its strategies. So let σ1 = σ1 (M) be the probability that the
defender protects the mountains and let σ2 = σ2 (M) be the probability
that the invader attacks the mountains. Given these strategies, we can
compute the expected utility for each player for each action.

u1 (M,σ2) = σ2 − (1− σ2) = 2σ2 − 1
u1 (P, σ2) = −σ2 + (1− σ2) = 1− 2σ2
u2 (σ1,M) = −σ1 + (1− σ1) = 1− 2σ1
u2 (σ1, P ) = σ1 − (1− σ1) = 2σ1 − 1

From these payoffs, it is straightforward to compute b1 (σ2) and b2 (σ1) .
Note that u1 (M,σ2) > u1 (P, σ2) if σ2 > 1

2
, u1 (M,σ2) = u1 (P, σ2) if

σ2 =
1
2
, and u1 (M,σ2) < u1 (P, σ2) if σ2 < 1

2
. Thus, we can write

the defender’s best response to all possible values of invader’s mixed
strategy of σ2.4

b1 (σ2) =

⎧⎨⎩ M if σ2 > 1
2

P if σ2 < 1
2

{M,P} if σ2 = 1
2

Clearly, since b1 (σ2) = {M,P} when σ2 =
1
2
, any randomization over

this set is also a best response. So we may also write b1 (σ2) = σ1
if σ2 = 1

2
. Now we can use exactly the same process to compute the

invader’s best response function. Note that

u2 (σ1,M) > u2 (σ1, P ) if σ1 <
1

2

u2 (σ1,M) < u2 (σ1, P ) if σ1 >
1

2

u2 (σ1,M) = u2 (σ1, P ) if σ1 =
1

2

Thus, the invader’s best response correspondence is

b2 (σ1) =

⎧⎨⎩ M if σ1 < 1
2

P if σ1 > 1
2

{M,P} or σ2 if σ1 = 1
2

Now we can compute the Nash equilibrium. We know from our previ-
ous discussion that there can be no Nash equilibrium where one agent
plays any of its pure strategies. So the remaining combination to check
is whether there is a combination of σ1 and σ2 that satisfies Nash’s cri-
teria. Clearly, σ1 is only a best response by the defender if σ2 = 1

2

4Note that the pure strategies of mountain or plains are just the special cases
of σ2 = 0 and σ2 = 1.
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and σ2 is only a best response if σ1 = 1
2
. Thus, σ1 = 1

2
and σ2 =

1
2
is

a Nash equilibrium in mixed strategies.
For a two player, two strategy game plotting best response functions

is often useful for finding mixed strategy equilibria. Consider Figure
5.1. The horizontal axis plots the defender’s mixed strategy raging
from σ1 = 0 (plains) to σ1 = 1 (mountains). The vertical axis plots the
invader’s mixed strategy from σ2 = 0 (plains) to σ2 = 1 (mountains).
The solid line represents the defenders best response to σ2 and the
dotted line represents the invader’s best response. Note that the only
intersection of these best response curves is at the Nash equilibrium
σ1 =

1
2
and σ2 =

1
2
.

Insert Figure 5.1 Here
Mixed strategy equilibrium do not only exist in games without pure

strategy equilibria. To see this, let’s return to the two agency Terrorist
Hunt game represented in Table 5.2. Now let σ1 be the probability
that the FBI hunts the kingpin and σ2 be the probability the CIA does.
Thus, we can compute the expected utilities for each agency for each
action.

u1(kingpin,σ2) = 2σ2
u1(operative, σ2) = 1

u2(σ1, kingpin) = 2σ1

u2(σ1, operative) = 1

As before we can compare these utilities to generate the best response
functions.

b1 (σ2) =

⎧⎨⎩ kingpin if σ2 > 1
2

operative if σ2 < 1
2

σ1 ∈ [0, 1] if σ2 = 1
2

b2 (σ1) =

⎧⎨⎩ kingpin if σ1 > 1
2

operative if σ1 < 1
2

σ2 ∈ [0, 1] if σ1 = 1
2

Figure 5.2 plots these best response functions as we did for Colonel
Blotto. Now note that there are three intersections of {σ1, σ2}: {0, 0} , {1, 1} ,
and

©
1
2
, 1
2

ª
. Of course the first two correspond to the pure strategy

equilibria we have already computed, but the third is an additional
mixed strategy equilibrium.

Insert Figure 5.2 Here
A feature of mixed strategy equilibria is that the probability that

an agent plays a particular strategy is not a function of her preferences
but those of her opponents. This is because an agent will only play
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mixed strategies is she is indifferent between a set of pure strategies.
Thus, the opponent must be choosing its own mixed strategy to insure
that the agent is indeed indifferent. Thus, its the preferences of the
opponent that determine the mixing probabilities. Occasionally, this
leads to counter-intuitive predictions. For example, suppose that we
modified the Terrorist Hunt so that the CIA received a much higher
payoff that the FBI for capturing the kingpin. We modify the payoffs
as follows

Table 5.9: Modified Terrorist Hunt
FBI\CIA Kingpin Operative
Kingpin 2,4 0,1
Operative 1,0 1,1

A naive prediction would be that since the CIA gets a higher payoff
from the kingpin that it will be more likely to hunt him. This predic-
tion is wrong. The reader can check that best response functions are
now:

b1 (σ2) =

⎧⎨⎩ kingpin if σ2 > 1
2

operative if σ2 < 1
2

σ1 ∈ [0, 1] if σ2 = 1
2

b2 (σ1) =

⎧⎨⎩ kingpin if σ1 > 1
4

operative if σ1 < 1
4

σ2 ∈ [0, 1] if σ1 = 1
4

Figure 5.3 plots these best responses and reveals that the mixed strat-
egy equilibrium is now

©
1
4
, 1
2

ª
. Thus, the change in the CIA’s pref-

erences did not lead it to hunt the kingpin with a higher probability,
it still hunts him 1

2
of the time. However, the change actually de-

creases the likelihood that the FBI will hunt the kingpin. Thus, the
probability that the the operative will get caught in the mixed strategy
equilibrium goes down. The logic behind this result is straightforward.
In the mixed strategy equilibrium, the CIA must choose σ2 to make the
FBI indifferent between hunting the kingpin and the operative. Since
the FBI’s preferences did not change, σ2 does not change. Since the
FBI choose σ1 to make the CIA indifferent, an increased utility for the
kingpin means that the FBI must lower the probability of searching for
the kingpin to maintain this indifference.

Insert Figure 5.3 Here
While mixed strategy equilibria do have some undesirable proper-

ties, they are guaranteed to exist in games with finite strategy sets as
per the following theorem.
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Theorem 5.4. (Nash) Given a normal form game Γ = hN,S, ui
in which S is finite, the mixed extension Γm = hN,∆, umi has at least
one NE. In other words every finite game has a mixed strategy NE.

The proof of this theorem (just as the last) utilizes some advanced
mathematics (fixed point theorems) and are thus relegated to the ad-
vanced section below.

4.1. Dominance and Mixed Strategies. Now that we have de-
fined mixed strategies, we can extend our definition of dominance to
include mixed strategies

Definition 5.10. A pure strategy si ∈ S is strictly dominated if
there exists a σ0i ∈ ∆(Si) such that

Ui(σ
0
i, s−i) > ui(si, s−i) for every s−i ∈ S−i.

The strategy si is weakly dominated if there is a σ0i for which the
inequality holds weakly for every s−i ∈ S−i and strictly for some s0−i ∈
S−i.5

The extension is straightforward in that we know allow strategies to
be dominated by mixed strategies. As the following example show, this
extended definition of dominance is much stronger that dominance in
pure strategies as some strategies may be dominated by mixed strate-
gies which are not dominated by pure strategies.6 To see how a mixture
may dominated a strategy undominated by pure strategies, consider the
following game:

Table 5.10
1\2 L M R
U 3, 1 4, 2 1, 4
D 2, 4 1, 2 3, 1

Note that neither player has any strategies which are dominated
by pure strategies. However, consider a mixed strategy by player 2 of
σ2 (L) =

1
2
and σ2 (R) =

1
2
. This mixture has an expected value of 2.5

when played against both U andD. This is a higher utility than player
2’s pure strategy of M . Having extended the definition of dominance,
we can now state the following relationship between mixed strategy
equilibria and iterated dominance.

5Recall that Ui(σ0i, s−i) =
P

s0i∈Si
ui(s

0
i, s−i)σi(si).

6Obviously, the converse cannot be true as any strategy dominated by a pure
strategy is dominated by a mixed strategy placing probability one on the dominating
strategy.
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Theorem 5.5. Given a finite normal form game with a mixed strat-
egy NE σ∗ if the strategy si played with positive probability under σ∗i
then it survives iterated deletion of strictly dominated strategies.

We leave the proof as an exercise. This theorem can be quite
useful in computing mixed strategy equilibria. Instead of computing
best responses to lotteries over all strategies, we need only compute
those for mixtures of strategies surviving iterated dominance.

4.2. Calculating Nash Equilibria. Even though we can specify
sufficient conditions for the existence of NE, actually computing the
equilibrium of a game is sometimes more art than science. In fact,
there are games which we know have equilibria like Chess for which the
actual equilibrium strategies have never been calculated. Nevertheless,
there are a few tricks and algorithms which can facilitate computation
4.2.1. Pure Strategy Nash Equilibria in Finite Games. We begin by

outlining the process for checking whether a given profile is an equi-
librium. Given a finite game, one way to characterize all of the pure
strategy NE is to test whether each profile s0 ∈ S is a Nash equilib-
rium. To do this one starts with a profile s0 = (s01, ..., s

0
n) and asks the

following sequence of questions:
1. Holding s02, ..., s

0
n fixed is there a strategy s

00
1 for which u1(s

00
1, s

0
−1) >

u1(s
0
1, s

0
−1). If so then s

0 is not a Nash equilibrium. If not then continue
2. Holding s01, s

0
3..., s

0
n fixed is there a strategy s

00
2 for which u2(s

00
2, s

0
−2) >

u2(s
0
2, s

0
−2). If so then s

0 is not a Nash equilibrium. If not then continue
·
·
·
i. Holding s01, ...s

0
i−1, s

0
i+1.., s

0
n fixed is there a strategy s00i for which

ui(s
00
i , s

0
−i) > ui(s

0
i, s

0
−i). If so then s

0 is not a Nash equilibrium. If not
then continue
·
·
·
n.Holding s01, ..., s

0
n−1 fixed is there a strategy s

00
n for which un(s

00
n, s

0
−n) >

un(s
0
n, s

0
−n). If so then s0 is not a Nash equilibrium. If not then s0 is

a Nash equilibrium.
This algorithm is then repeated for each profile in S.
In two player finite games —which are representable by matrices—

the algorithm is particularly straightforward. Start with a profile i.e.
matrix entry and see whether there is an entry in the same column that
makes the row player better off. If so then the original profile is not
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a Nash equilibrium. If not then repeat the exercise interchanging row
and column. Consider the following example:

Table 5.11
1/2 l c r
t 5,4 2,3 6,2
m 2,5 3,6 5,5
b 5,2 0,3 7,4

We begin by conjecturing that (t, l) is a pure strategy Nash equi-
librium. Note that player 1 can only affect the row choice. Given
that s2 = l player 1 chooses between u1(t, l) = 5, u1(m, l) = 2 and
u1(b, l) = 5. Accordingly b1(l) = {t, b}. Given s1 = t player 2 chooses
between utilities of 4, 3 and 2 so b2(t) = {l}. Accordingly (t, l) is a
NE. Since b2(l) has a single element, we know that this is the only pure
strategy NE in which t is played. Recall that b1(l) = {t, b} so (m, l) is
not a NE as player 1 would deviate to either t or b if she anticipated
player 2 selecting l. Now we conjecture that (m, c) is a NE and note
that b1(c) = {m} and b2(m) = {c} and thus our conjecture is correct.
Since r /∈ b2(m) we note that the only pure strategy NE in which m
is played is (m, c). Now if we conjecture that (b, l) is a NE we will
note that b2(b) = {r} and thus we see that our conjecture is incorrect.
If we conjecture that (b, c) is a NE we note that b1(c) = {m} and so
our conjecture is incorrect. Finally conjecturing that (b, r) is a NE we
observe that neither player has an incentive to deviate and that the
conjecture is correct. We thus conclude that the set of pure strategy
NE is {(t, l), (m, c), (b, r)}.

5. Pure Strategy Nash Equilibria in Non-Finite Games*

In games where the strategy space is not finite, the algorithm ex-
hibited above will not work. However, sometimes we can use the
techniques of optimization to compute equilibria. If we assume that
the utility functions ui(s) are twice differentiable, we can use simple
calculus to compute best responses. Since a best response to s−i is the
maximizer of u(si, s−i) over Si, a sufficient condition for si ∈ bi (s−i) is
that ∂ui(si,s−i)

∂si
= 0 and ∂2ui(si,s−i)

∂s2i
< 0. The first of these conditions

is termed the first order condition (FOC) while the second is known
as the second order condition (SOC).7 Thus, when the FOC and SOC
hold, we can use the solutions to ∂ui(si,s−i)

∂si
= 0 to solve for each of the

7 If Si has more than one dimension then the term
∂ui(si,s−i)

∂si
is a vector where

each coordinate is the partial derivative with respect to one coordinate of si, and the



94 5. GAMES IN THE NORMAL FORM

best response functions. Then a Nash equilibrium is the solution to
the system

s∗1 = b1(s
∗
−1)

·
s∗i = bi(s

∗
−i)

·
s∗n = bn(s

∗
−n)

However, this procedure can be unnecessarily cumbersome as it re-
quires solving for each best response function as well as the system of
equations. Often it is more convenient to solve the system of first
order conditions directly

∂u1(s1, s−1)

∂s1
= 0

·
∂ui(si, s−i)

∂si
= 0

·
∂un(sn, s−n)

∂sn
= 0

To guarantee that the solution is an equilibrium, we must check the
second order conditions for each agent at the solution.
If either system of equations has multiple solutions, there are more

than one equilibrium in pure strategies. However, the absence of a so-
lution does not necessarily imply that there are no pure strategy Nash
equilibria. Since the FOC and SOC are sufficient but not necessary,
there are many games in which the best responses do not satisfy them.
Such situations can arise for a variety of reasons. In cases where pay-
offs against s−i are either not quasi-concave or they are monotonically
increasing or decreasing over Si, agent i’s best response will be at the
boundary of Si. For such best responses, known as “corner solutions”,
the FOC will typically not hold. A second situation in which the FOC
approach will not work is when the payoff functions are discontinuous
in s−i. Since the payoffs will not be differentiable at the discontinuities,
we cannot compute the FOC or the SOC.

quantity 0 denotes the vector of 0’s. The second order condition is the requirement
that the matrix of second derivatives be negative definite.
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6. Application: Interest Group Contributions

To demonstrate this procedure for computing Nash equilibria, we
consider a simple interest group game. Two interest groupsN = {1, 2}
want to influence a government policy. Both groups know that the
final policy will be a function of how much support they give to the
government. The first group’s most preferred policy is 0 and the
second group’s most preferred policy is 1. The government favors the
policy 1

2
but may be influenced by the contributions. Each group

can contribute an amount si ∈ [0, 1] and the final policy is given by
x(s1, s2) =

1
2
− s1 + s2. So both groups contribute to the government

simultaneously and then the government enacts the policy given by the
function x(s1, s2). The government keeps all of the contributions to
buy advertisements for the next election.8 We assume that the interest
groups each have utility functions over their contribution and the final
policy of the form:

u1(s1, s2) = −(x(s1, s2))2 − s1

u2(s1, s2) = −(1− x(s1, s2))
2 − s2

Substituting the policy function into the utility functions we attain:

u1(s1, s2) = −(
1

2
− s1 + s2)

2 − s1

u2(s1, s2) = −(1− (
1

2
− s1 + s2))

2 − s2

The first order conditions are given by differentiation:

FOC1 : 2(
1

2
− s1 + s2)− 1 = 0

FOC2 : 2(1− (
1

2
− s1 + s2))− 1 = 0

Solving FOC1 yields the best response correspondence

b1(s2) = s2.

Solving FOC2 yields the best response correspondence

b2(s1) = s1.

Now the set of pure strategy NE to this game is infinite and it is given
by:

{(s1, s2) ∈ [0, 1]2 : s1 = s2}

8This game is closely related to the all-pay auction in economics.
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This result has a very straightforward interpretation. Any pair of
equivalent contributions is a Nash equilibrium. The resulting policy
from such a profile of contributions is 1

2
. No contributor wants to

unilaterally deviate because the marginal gain of an additional unit of
contribution (in terms of pulling policy in the desirable direction) is
exactly offset by the marginal cost of loosing another unit of resources.
As in the Prisoner’s dilemma, the Nash equilibria of this game are
inefficient. That is, the contributors would rather commit to not giving
any money to the government. However, since no such commitment
is possible in the game, the fact that each contributor has an incentive
to deviate from such an agreement means that this outcome is not
supportable.

7. Application: International Externalities

Suppose that we have two countries who must decide how much to
invest in pollution abatement. The strategies are a levels of investment
s1 and s2 > 0. Each country pays a cost c(si) = kisi We will assume
that k1 < k2 so that country 1 can lower pollution a given amount at a
lower costs than country 2. The payoffs to the investments are based
on the total investment made so that ui (s1, s2) =

√
s1 + s2. Therefore,

the payoffs for each country are
√
s1 + s2 − kisi

Given these payoffs it is straightforward to get the FOC conditions:

1

2
(s1 + s2)

−1
2 − k1 = 0

1

2
(s1 + s2)

−1
2 − k2 = 0

while the SOCs are both −1
4
(s1 + s2)

− 3
2 < 0. However, note that

there can be no solution to the system of FOCs since k1 < k2. Suppose
that s1 > (2k2)

−2, the left hand side of country 2’s FOC is always
negative. This implies that country 2’s payoff are always decreasing
in its investment. This is shown graphically in Figure 5.4 which plots
country 2’s payoffs as a function of country 1’s investment. Since all
investments are assumed to be non-negative, country 2’s best response
to this level of country 1 investment is to invest zero. Similarly, if
s2 > (2k1)

−2, country 1’s best response is zero investment. Since these
“corner solutions” are part of each countries best response functions,
we may not use the FOC approach.

Insert Figure 5.4 Here
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It is easy to see the actual solution graphically. Figure 5.5 plots
the best response functions for both countries. The vertical axis rep-
resents both country 2’s strategy and its best response to country 1.
Similarly, the horizontal axis represents country 1’s strategy and best
response. The dotted line plots country 2’s best response function
which is declining in s1 until s1 > (2k2)

−2 and then it is zero. The
solid line is the country 1’s best response which also declines to zero at
s2 = (2k1)

−2 . Clearly, the only intersection of the best responses is at
the point where s1 = (2k1)

−2 and s2 = 0.

Insert Figure 5.5 Here
If we assumed that instead of k1 < k2 that country 2 is the low

cost country, it is easy to check that the Nash equilibrium strategies
would be s1 = 0 and s2 = (2k2)

−2. Thus, the unique Nash equilibrium
of this game is one where the high cost country free rides completely
on the low cost country. Thus, the low cost country chooses optimal
investment knowing that the high cost will invest nothing.

8. Computing Equilibria with Constrained Optimization*

A useful alternative when a game may have corner best response
functions is to use the techniques of constrained maximization such
as Kuhn-Tucker programing to compute necessary conditions for Nash
equilibria. To illustrate, consider the externality game where we im-
pose the constraint that s1 ≥ 0 and s2 ≥ 0. We can formally incor-
porate these constraints with Lagrange multipliers λ1 and λ2 so that
agent i chooses si to maximize√

s1 + s2 − kisi + λisi

Now the necessary conditions for a Nash equilibria are the first- order
conditions

1

2
(s1 + s2)

− 1
2 − k1 + λ1 = 0

1

2
(s1 + s2)

− 1
2 − k2 + λ2 = 0

along with the “slackness” conditions

λ1s1 = 0

λ2s2 = 0

and the constraints:

λi ≥ 0 for all i
si ≥ 0 for all i.
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Thus, a Nash equilibrium is a solution to the four equations that satisfy
the constraints. Note that the first two equations imply that λi =
ki − 1

2
(s1 + s2)

−1
2 . We can use rewrite the slack conditions as

s1

∙
k1 −

1

2
(s1 + s2)

−1
2

¸
= 0

s2

∙
k2 −

1

2
(s1 + s2)

−1
2

¸
= 0

and the constraints on λ as

k1 ≥
1

2
(s1 + s2)

−1
2

k2 ≥
1

2
(s1 + s2)

−1
2

It is easy to see that there can be no solution in which both countries are
making positive investments because this would require the bracketed
terms of each FOC to be zero which they cannot be. It is also easy to
see that s1 = s2 = 0 is not an equilibrium because the requirement that
ki ≥ 1

2
(s1 + s2)

− 1
2 would be violated. Suppose that s1 = 0 and s2 > 0.

Then the second first order condition implies that k2 = 1
2
(s1 + s2)

− 1
2 >

k1 which violates the non-negativity constraints on λ1. Thus, the only
possible NE involves s1 > 0 and s2 = 0. The first FOC implies that
s∗1 = (2k1)

−2 which exactly the result we derived in the last section.

9. Proving the Existence of Nash Equilibria**

In this section, we provide a rigorous proof of Nash’s Theorem.
But first we need to develop some additional mathematical ideas. The
most important is that of a fixed point. Intuitively, a fixed point of a
function (correspondence) is a point (set) in the domain that maps into
itself in the range. Formally, given a correspondence. c : A → A a
fixed point x∗ ∈ A is a point such that x∗ ∈ c(x∗). If c(·) is a function
then a fixed point is a point x∗ such that x∗ = c(x∗). Note that since
a Nash equilibrium is a strategy profile s∗ for which s∗i ∈ bi(s

∗
−i) for

every i ∈ N , it is a fixed point of the the best response correspondence

b(s) = (b1(s−1), ..., bi(s−i), ..., bn(s−n)).

Thus, proving the existence of a Nash equilibrium is simply a matter of
determining whether or not a fixed point exists for a given best response
correspondence. Fortunately, there is a large body of mathematics
dedicated to determining the sufficient conditions for the existence of
a fixed-point. A specification of such conditions is known as a fixed
point theorem. Thus, if we can demonstrate that the properties of
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the best response correspondence for a game match the conditions of
an established fixed point theorem, we have proven the existence of a
Nash equilibrium.
Before proceeding, we need to elaborate some of the conditions that

will be required for the existence of a fixed point. The first is that we
require that the correspondence be convex valued.

Definition 5.11. A correspondence c : A→→ A is convex valued
if for every a ∈ A, c(a) is a convex subset of A.

In other words a correspondence c(·) is convex valued if for every
x ∈ A if y, z ∈ c(x) then for any λ ∈ [0, 1] the point λy+(1−λ)z ∈ c(x).
Now we define the upper inverse of a set B which is the set of points
in the domain which the correspondence maps into subsets of B.

Definition 5.12. For a correspondence c : A →→ A, the upper
inverse of a set B ⊆ A, is c+(B) = {x ∈ A : c(x) ⊂ B}.
We can define upper hemi-continuity, an important property for

establishing the existence of a fixed point.

Definition 5.13. A correspondence c : A →→ A is upper hemi-
continuous if for every open set O ⊆ A the set c+(O) is open.

Definition 5.13 is often hard to verify. The existence of a closed
graph is easier to check.

Definition 5.14. A correspondence c : A →→ A has a closed
graph if for any two sequences xn → x ∈ A and yn → y ∈ A with
xn ∈ A and yn ∈ c(xn) for every n we have y ∈ c(x).

The following theorem (whose proof we leave as an exercise) es-
tablishes that correspondences with closed graphs are upper hemi-
continuous.

Theorem 5.6. If A is compact a correspondence c : A →→ A is
upper hemi-continuous if it has a closed graph.

The intuition behind the closed graph condition is not difficult to
see. When a correspondence has a closed graph, if we have two se-
quences xn and yn of points each in A that converges to x and y both
in A with yn ∈ c(xn) it must be the case that y ∈ c(x). In other words
for any sequence in the domain converging to x and any selection of
points yn that are in the image converging to a point y, it must be the
case that the limit y is in the image of the correspondence evaluated
at the limit of x. Graphically for a correspondence that has a closed
graph, the set {(x, y) ∈ A2 : y ∈ c(x)} is closed in the space A2. For
a more complete treatment of these concepts see Border (1989).
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It is not difficult to see that if the correspondence c : A →→ A is
single-valued for every a ∈ A then c(·) is a function. If a single valued
correspondence is upper hemi-continuous then it is also a continuous
function.
To establish Theorem 5.3, we will use the following fixed point

theorem

Theorem 5.7. (Brouwer) Suppose A ⊂ Rd is a compact and convex
set. If f : A→ A is a continuous function then f(·) has a fixed point
in A.

To establish Theorem 5.4, we will use the following fixed point
theorem.

Theorem 5.8. (Kakutani) Suppose that A ⊂ Rd is a compact and
convex set with c : A→→ A a correspondence satisfying the conditions:
(1) c(x) is non-empty for every x ∈ A
(2) c(·) is convex valued
(3) c(·) is upper hemi-continuous
then c(·) has a fixed point in A.

Several proofs of these results appear in Border. In order to es-
tablish the existence of Nash equilibria in either mixed strategies or
pure strategies when the appropriate assumptions are satisfied, we will
need to show that in the case of Theorem 5.7 b(s) is a continuous
function and in the case of Theorem 5.8 b(s) is a correspondence that
satisfies the conditions 1-3. A result that is useful in its own right,
as well as helpful in demonstrating that b(s) is non-empty and upper
hemi-continuous is the Theorem of the Maximum.

Theorem 5.9. (Theorem of the Maximum) Let X ⊂ Rd,M ⊂ Rz

be compact and convex sets. Let f(x,m) : X×M → R1 be continuous
in x and m then the correspondence c :M →→ X defined as

c(m) = argmax
x∈X

{f(x,m)}

is non-empty and upper hemi-continuous.

The fact that the set of optimal choices is non-empty is interesting
on its own. This result was stated in a previous section. The fact
that the correspondence c(·) defined in the theorem is upper hemi-
continuous has the following interpretation. Calling the vector m a
parameter vector of the optimization problem, if we consider a sequence
of parameter vectors mn converging to m then for any selection of
optimal policies xn ∈ c(mn) that converge to x it will be the case that
x ∈ c(m).
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We can now prove Theorem 5.3.

Proof of Theorem 5.3. Assume that: Si is a convex subset of
Rd for each i ∈ N and for each i ∈ N, ui(s) : S → R1 is continuous
and for each s0−i ∈ S−i, ui(si, s

0
−i) is strictly quasiconcave in si. By

the Theorem of the Maximum the correspondence bi(s−i) : S−i →→ S
defined as

bi(s−i) = argmax
si∈Si

{ui(si, s−i)}

is non-empty and upper hemi-continuous. By theorem 4 of chapter
2, bi(s−i) is a singleton for every s−i ∈ S−i. The fact that an upper
hemi-continuous correspondence that is single valued is a continuous
function (see Exercise 5.7) implies that bi(s−i) is a continuous function
from S−i into Si for each i ∈ N . We now construct the function

b(s) : S → S

by defining b(s1, ..., sn) = (b1(s−1), ...., bn(s−n)). Since s−i(s) is a pro-
jection it is continuous. Since bi(·) is continuous and the composition
of continuous functions is continuous, and the product of continuous
functions is continuos in the product space the function b(s) is con-
tinuous. By Brouwer’s fixed point theorem this mapping has a fixed
point, s∗ = b(s∗). But this means that for every i ∈ N, bi(s

∗
−i) = s∗i

and thus s∗ is a NE.¥ ¤

The proof of Theorem 5.4 is similar. We will show that for any
finite game Γ in the mixed extension game Γm the best response corre-
spondence satisfies the conditions of Kakutani’s fixed point theorem.

Proof of Theorem 5.4. Assume that in the game Γ, Si is finite
for each i ∈ N . This implies that in the mixed extension Γm ∆i is
a compact and convex subset of a finite dimensional Euclidean space.
By definition 5.9 we can see that U(σi, σ−i) is linear and therefore
continuous in σ. Letting bi(σ−i) : ∆−i →→ ∆i be defined as

bi(σ−i) = arg max
σi∈∆i

{U(σi, σ−i)}

the Theorem of the Maximum implies that this correspondence is non-
empty for every σ−i ∈ ∆−i and upper hemi-continuous. Since U(σi, σ−i)
is linear for any σ−i and any two σ0i, σ

00
i if U(σ

0
i, σ−i) = U(σ00i , σ−i) we

have U(λσ0i + (1− λ)σ00i , σ−i) = U(σ0i, σ−i) so bi(σ−i) is convex valued.
Combining these facts we see that the correspondence

b(σ) : ∆→ ∆
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defined as b(σ1, ..., σn) = (b1(σ−1), ...., bn(σ−n)) satisfies the require-
ments of Kakutani’s fixed point theorem. Thus there is a mixed strat-
egy profile satisfying the condition σ∗ ∈ b(σ∗). Such a profile is a NE
to Γm and thus a mixed strategy NE to Γ.¥ ¤

10. Strategic Complementarity

Consider two candidates 1 and 2 running for office. Each candidate
selects a level si > 0 of campaign effort. The opportunity cost of this
effort is βisi where βi > 0. We assume that the election outcome is a
probabilistic function of s1 and s2. Let π(s1, s2) denoting the proba-
bility that candidate 1 wins so that candidate 2 wins with probability
1 − π(s1, s2). It is reasonable to think that this probability function
is increasing in s1 and decreasing in s2. In formulating a reasonable
model of campaigns, we confront an important question: should can-
didate 1’s best response be increasing or decreasing in candidate 2’s
effort? It seems natural to think that candidate 1 will select higher
levels of s1 in response to higher levels of s2 and vice versa. If this
is the case, we say that the two choice variables are strategic comple-
ments. Games with strategic complementarity are among a class of
games known as supermodular and are particularly amenable to equi-
librium and comparative static analysis. In this section we sketch the
intuition behind the analysis of such games using an example. We
leave the technical details for the subsequent section.
Kahn and Kenney’s (1999) study of Senate elections posits that

competitiveness is an important factor in determining how much me-
dia coverage campaign activities will generate. The competitiveness
shapes the way that voters respond to campaigns while campaigns in-
fluence the competitiveness of a race. Absent high competitiveness,
the media and voters tune-out and thus the marginal value of advertise-
ments or speeches is low. On the other hand when the competitiveness
is high these messages have large effects. Kahn and Kenney’s theory
portrays the media as an mechanism that determines competitiveness
as a function of campaigning. Consistent with this interpretation,
higher levels of campaigning are likely to result in higher states of com-
petitiveness. In highly competitive races advertisements and speeches
are more influential. The feedback loop that Kahn and Kenney discuss
suggests that candidate effort levels may indeed be strategic comple-
ments. If so, each of the best responses are strictly increasing functions.
Figure 5.6 depicts a game of this form with a unique equilibrium point
(s∗1, s

∗
2).

Insert Figure 5.6
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While pictures with multiple equilibria could be drawn, it is not
difficult to see that the equilibria will all be completely ordered such
that if (s∗1, s

∗
2) and (s

∗∗
1 , s

∗∗
2 ) are two Nash equilibria and s∗1 > s∗∗1 then

s∗2 > s∗∗2 (and if s
∗
2 > s∗∗2 then s

∗
1 > s∗∗1 ). To see that this must be true,

try drawing a counterexample while maintaining the assumption that
the best responses are strictly increasing.
We can take Kahn and Kenney’s hypothesis about competitiveness

further. Suppose at the beginning of a campaign, there is an ex-
ogenous level of competitiveness. Sources of variation might include
the importance of office, the media environment, and the attentiveness
of the voters. So consider two electoral environments where one is
more competitive than the other. For a fixed level of si, we would
expect that b−i(si) is higher in the more competitive race. In Figure
5.6, b0i(s−i) denotes the best responses for the more competitive while
bi(s−i) represents those of the less competitive election. The figure
demonstrates that the equilibrium campaign efforts of the more com-
petitive race (s0∗1 , s

0∗
2 ) are higher than the equilibrium efforts of the less

competitive race, (s∗1, s
∗
2). Thus, we can conclude that competitiveness

generates more campaigning.
It is crucial to note that this comparative static result was generated

by nothing more than the assumption of strategic complementarity. As
long as both best responses are increasing, a common upward shift in
the best responses must lead to a higher intersection point. It is easy
to see that the effect of competitiveness would be ambiguous if one
of the players had a downward sloping best response Furthermore,
as long as candidate efforts are strategic complements, the result does
not hinge on any further assumptions about functional forms or player
preferences. It also obviates the need for the continuous and differen-
tiable best response functions required for use of the implicit function
theorem.
The trick, of course, is to determine what model primitives are

consistent with complementarity. In the following technical section, we
present the underlying theory behind supermodular games and present
some sufficiency conditions for the existence of equilibria exhibiting
monotone comparative statics.

11. Supermodularity and Monotone Comparative Statics*

Recall that Nash’s theorem relies on the continuity of best responses
and compactness of strategy sets so that Kakutani’s fixed point theo-
rem ensures the existence of equilibria. Unfortunately, these existence
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requirements often require very strong assumptions about the primi-
tives of the model. However, we can use a different fixed point theo-
rem to establish existence so long as the best responses satisfy certain
monotonicity conditions, such as the ones discussed in the last sec-
tion. As a bonus, the comparative statics analysis of the equilibria set
is immediate when the best responses satisfy these conditions. These
analyses are much simpler and straightforward than those based on the
implicit function theorem. In this section, we summarize several re-
sults on a class of games known as supermodular games. Of particular
interest is the existence of equilibria with discontinuous best response
correspondences and direct comparative static results.
In principal the concepts of this section can be developed for any

partial orderings, with the goal being the attainment of results about
monotonicity relative to the partial order. To keep things concrete we
will consider only the natural partial ordering ≥ on sets contained in
Rn. For any two numbers x, y ∈ R1 the join is x ∨ y = max{x, y}
and the meet is x ∧ y = min{x, y}. For any two vectors in x, y
in Rn we have x ∨ y = (max{x1, y1}, ...,max{xn, yn}) and x ∧ y =
(min{x1, y1}, ....,min{xn, yn}). A set which contains all of the joins
and meets of its elements is called a lattice.

Definition 5.15. A set A is a lattice if for each x, y ∈ A we have
x ∨ y ∈ A and x ∧ y ∈ A

Note that intervals and the products of intervals are lattices, but
sets like {x ∈ R3 : x1 + x2 + x3 ≤ 1} are not lattices.9 Intuitively,
squares (products of intervals) are lattices but triangles (simplices) are
not.10 Typically we are interested in single agent or multi-agent deci-
sion theory problems in which there is a set of choice variables X and a
set of exogenous parameters P , both of which are lattices. The objec-
tive function depends on both types of variables, f(x, p) : X×P → R1.
The key condition that we now focus on is called supermodularity.

Definition 5.16. The function f(·, ·) : X×P → R1is supermodular
in (x, p) if for all z, z0 ∈ X × P, f(z) + f(z0) ≤ f(z ∨ z0) + f(z ∧ z0)

While verification of this condition may be difficult, a more intuitive
condition, increasing differences, is often easily verified.

9But see page 14 of Topkis 1998 for a dicusssion of translations that convert
sets like the simplex into lattices.

10Although, we do not consider examples where the sets are discrete (or just
not convex) the definition of a lattice and subsequent results can be readily applied
to non convex sets.
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Definition 5.17. The function f(·, ·) : X×P → R1 has increasing
differences in (x, p) if for all p ≤ p0and x ≤ x0, f(x0, p0) − f(x, p0) ≥
f(x0, p)− f(x, p).

A function with increasing differences exhibits a greater marginal
effect of x when p is higher. In other words increasing difference for-
malizes the idea of complementarity. Since increasing differences is
easier to interpret in terms of the substance of models than is super-
modularity, it is convenient that the following equivalence holds.

Proposition 5.1. (Topkis) The function f(·, ·) : X × P → R1
has increasing differences in (x, p) if and only if it is supermodular in
(x, p).

In the case of a twice differentiable function f(·, ·) : X × P → R1,
supermodularity coincides with the condition

∂2f

∂z1∂z2
≥ 0

for any coordinates z1 and z2 of X or P or both. Supermodularity is
preserved under several types of operations.

Proposition 5.2. Suppose that X is a lattice then
(a) if f(x) is supermodular on X and α > 0 then αf(x) is super-

modular on X.
(b) if f(x) and g(x) are supermodular on X then f(x) + g(x) is

supermodular on X.
(c) if ft(x) is supermodular on X for t = 1, 2, ... and f(x) =

limk→θ fk(x) for each x ∈ X then f(x) is supermodular in X.
(d) if F (ω) is a distribution function on a set Ω and g(x, ω) is

supermodular on X for each ω ∈ Ω then f(x) =
R
Ω
g(x, ω)dF (ω) is

supermodular on X.

We first present the implications of supermodularity in the simple
case of an individual optimization problem. Supermodularity implies
that the optimal solution has monotone comparative statics. By this
we mean that each element of argmaxx∈X f(x, p) is an increasing func-
tion of p. Specifically we have the following result.

Proposition 5.3. (Topkis) If f(·, ·) : X×P → R1 is supermodular
in (x, p) and g(p) = argmaxx∈X f(x, p) then each component of g(p) is
increasing in p where g(p) exists.

Of course nothing in the theorem says that an optimal solution
exist. Recall that 2.3 establishes the non-emptiness of the maximal
set for lower continuous orderings on compact sets. Lower continuity
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of preferences corresponds to what is called upper semicontinuity of
objective functions.

Definition 5.18. A function f(x) : X → R1 is upper semicontin-
uous at x0 ∈ X if for all ε > f(x0) there is some δ > 0 such that for
all x ∈ B(x0, δ) (an open ball around x0 with radius δ) ε ≥ f(x). A
function is upper semicontinuous on X if it is upper semicontinuous at
every x0 ∈ X.

Upper semicontinuity at x0 requires that lim infx→x0 f(x) ≤ f(x0).
Using the result of Exercise 5.11, Theorem 2.3 and restating Topkis’
result leads to the conclusion.

Proposition 5.4. If f(·, ·) : X×P → R1 is supermodular in (x, p)
and upper semicontinuous then g(p) = argmaxx∈X f(x, p) is non-empty
for every p ∈ P and each component of g(p) is increasing in p.

In our argument for existence with continuity, we used properties of
the objective functions to establish properties of the best responses and
then applied a fixed point theorem to the best response correspondence.
Analogously Tarsky’s fixed point theorem allows us to use monotonicity
of best responses to establish existence of Nash equilibria. This and
the previous proposition then lead to the conclusion that a game with
supermodular and upper semicontinuous utility functions has a Nash
equilibria. We first present Tarsky’s theorem.

Proposition 5.5. (Tarsky) If f(x) is an increasing mapping from
a compact lattice X into itself then there exists at least one fixed point
x∗ such that f(x∗) = x∗.

Insert Figure 5.7
In Figure 5.7 we demonstrate the case where X is one dimensional.

As long as the function f(x) is increasing the presence of discontinuities
does not enable us to skip all of the crossings of f(x) and the dotted
45◦ line. Just as Kakutani’s theorem generalized Brouwer’s to the case
of correspondences, Zhou (1994) represents a generalization of Tarsky
to the case of correspondences. We do not present this result as much
additional notation is needed, but instead present directly the result
for supermodular games. A regular supermodular game is a normal
form game hN, {Si, u(·, ..., ·)}i∈ni in which Si is a compact lattice for
each i ∈ N and u(·, ..., ·) is supermodular and upper semicontinuous
for each i ∈ N.

Proposition 5.6. A regular supermodular game has at least one
pure strategy Nash equilibrium and the set of such equilibria is a lattice
with a smallest and biggest equilibrium profile.
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Why do we care about the existence of a smallest and biggest equi-
librium? Our second interesting result for supermodular games deals
with comparative statics of these particular equilibria. To motivate
the finding we return to the case of a function f(x) on R1.

Insert Figure 5.8

In Figure 5.8 we depict an increasing function with four fixed points
f(x) = x. The dotted curve f 0(x) represents the result of shifting f(x)
up. Note that the biggest and smallest fixed points shift to the right
(get larger) when the function is shifted up. In contrast some of the
fixed points move the other way. The smallest and biggest fixed points
tend to be the result of the function crossing the 45◦ line from above and
behave the same way. This intuition forms the basis for the following
comparative static result.

Proposition 5.7. In a regular supermodular game the smallest and
biggest equilibrium profiles are increasing in p.

As Figure 5.8 suggests other equilibria may behave differently. Echenique
(2002) shows that in games like this with complementarities any selec-
tion of equilibria that does not also exhibit the monotone comparative
static of the biggest and smallest equilibria will be unstable under a
large range of adaptive dynamics. In other words there are clear rea-
sons to select equilibria which exhibit the comparative static described
in the proposition.
Returning to the discussion of Kahn and Kenney’s competitiveness

hypothesis, suppose that candidate 1 wishes to maximize π(s1, s2, c)−
β1s1 and candidate 2 wishes to maximize 1− π(s1, s2, c)− β2s2 where
π(s1, s2, c) depends on an exogenous level of competitiveness c ∈ R1.
The fact that campaign activity influences competitiveness and that
voters pay closer attention in more competitive races suggests that the
incremental effect of s1 on π(s1, s2, c) should be higher when s2 and/or
c are higher. A symmetric argument follows for the incremental effect
of s2. Accordingly the assumption that payoffs are supermodular is
consistent with (if not implied by) Kahn and Kenney’s explanation.
Assuming compactness of the choice sets and upper semicontinuity of
π(s1, s2, c) in s1 and −π(s1, s2, c) in s2 allows us to conclude (from
Propositions 5.6 and 5.7) that equilibria exist and in the biggest and
smallest equilibria si is increasing in c. This may seem like a pretty
strong conclusion to reach without having to specify very much about
the function π(·, ·, ·). The power of monotone comparative statics is
that they tend to isolate the minimal structure that is needed for a
particular comparative static result.
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For a thorough review of results for supermodular games andmonotone
comparative statics see Topkis (1998). A focused summary of results
and applications to political science appear in Ashworth and Bueno de
Mesquita (2004).

12. Refining Nash Equilibria

Recall the majority rule voting game of section where we showed
that any profile which no single voter is pivotal is a Nash equilibrium.
We justified ignoring these equilibria on the basis that they involved
playing weakly dominated strategies. However, the elimination of
weakly dominated strategies is not the only way that we can justify
“refining” the set of Nash equilibria in this game. Suppose instead of
assuming that every agent is capable of playing her best response with
probability one, we assume that there some small probability that each
player will “tremble” and play another strategy. To keep things very
simple, lets look at a three player version of the game where 2 voters
prefer D and one prefers R. Formally, we will assume that each player
must play each pure strategy with a small probability ε which must
be less than 1

2
.11 This captures the idea that mistakes ensure that all

strategies are played with a least a minimal probability.
Clearly it is a best response for each agent to attempt to maximize

the probability of their preferred candidate winning which is the same
as minimizing the probability that the least desired candidate wins.
So we need to compute the probability that each candidate wins under
various combinations of strategies. The probabilities of a R victory
are:

Pr (R|3 attempted votes for R) = (1− ε)3 + 3 (1− ε)2 ε

Pr (R|2 attempted votes for R) = (1− ε)3 + (1− ε)2 ε+ 2 (1− ε) ε2

Pr (R|1 attempted votes for R) = ε2 (1− ε) + 2 (1− ε)2 ε+ ε3

Pr (R|0 attempted votes for R) = ε3 + 3ε2(1− ε)

The reader should verify that since ε < 1
2
, the probability that a

Republican wins is strictly increasing in the number of intended votes.
First, we consider the “bad” equilibrium where R wins with unan-

imously. Does this outcome survive in the presence of trembles i.e.
does each voter vote R with the maximal probability 1 − ε? Clearly,
the R preferring voter will maximize the probability of an R victory by
voting R with probability 1− ε. However, consider the choice of a D

11The idea that voters might not vote for the candidate that they intended has
a renewed substative importantance after the 2000 presidential election.
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voter? She has the choice of conforming the equilibrium by intending
to vote R in which case R wins with probability 1− ε)3 + 3 (1− ε)2 ε
or defecting to an intended vote of D in which case R wins (1− ε)3 +
(1− ε)2 ε+2 (1− ε) ε2. This defection reduces the probability that R
wins by 2 (1− ε)2 ε − 2 (1− ε) ε2 > 0. Thus, the D voter will prefer
the defection. It is easy to show that the equilibrium corresponding
where all voters vote D also does not survive trembles.
This concept of refining the set of equilibria by focusing on those

that are robust to small mistakes by the agents was first developed
by Selten. He named such equilibria perfect. A formal definition of
perfect equilibria follows:

Definition 5.19. An “ε-constrained” equilibrium is a totally mixed
strategy profile σε such that for each player i, σεi solves maxσiui(σi, σ

ε
−i)

subject to σi(si) ≥ ε. A perfect equilibria is the limit of an ε-constrained
equilibrium as ε goes to 0.

It is to see how the unanimous voting equilibria fail to meet this
definition since in the ε-constrained equilibria all players vote for their
least preferred candidate with probability ε. Thus, the limit of these
equilibria are strategy profiles which place zero probability on voting
for the lesser candidate. Indeed, the only perfect equilibrium is the
one where all voters vote for their favorite candidate.
Perfect equilibria have some desirable properties. First, all perfect

equilibria are Nash equilibria of the game without the ε constraints.
Thus, the set of perfect equilibria are a proper subset of the set of
Nash equilibria. Secondly, it can be shown using arguments similar to
the existence of Nash equilibria that all finite game normal form games
have at least one perfect equilibria.12

13. Application: Private Provision of Public Goods

Since the publication of Mancur Olson’s Logic of Collective Action,
a central question in political science has been the conditions under
which individual rational agents would be willing to incur personal
costs to contribute to the public good. In this section, we present a
game theoretic model of such contributions. This model is based on
the work of Palfrey and Rosenthal (1984).
Assume that there are n agents who must decide whether to provide

a public good. Provision requires the contribution of a single individ-
ual and produces a utility of 1 unit for each individual. However, any

12The proof follws from the fact that the ε-constrained mixed strategy space is
compact, convex, and non-empty.
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contributor pays a cost c < 1. Thus, the strategy set for each agent is
{contribute, don’t contribute}. To simplify notation, we define “con-
tribute” as si = 1 and “don’t contribute” as si = 0. Since we will also
consider mixed strategy equilibria, let σi be the probability that agent
i contributes. Given this setup, the payoff for each agent is 1 − c if
she contributes, 1 is she doesn’t contribute but some other agent does,
and 0 otherwise.
First, consider the set of pure strategy equilibria. It is easy to

check that for each agent i there is an equilibrium where si = 1 and
s−i = 0. Agent i receives 1− c while all other agent receive a utility of
1. Clearly, agent i will not defect since failing to contribute will lower
her payoff to 0. Similarly, no other agent with defect to contributing
since it will lower his payoff from 1 to 1− c. Now we can check to see
that no other combination of strategies is a pure strategy Nash equi-
librium. First, consider si = 0 for all i. In this case, any agent would
do better by contributing so that this profile cannot be an equilibrium.
Next consider a strategy combination where more than one agent con-
tributed to the public good. Clearly, any contributor would increase
her utility by withholding the contribution since it would be provided
by the contribution from another agent.
It is important to note that the equilibria to this game are quite

different from the decision theoretic predictions of Olson. In fact, all
of the equilibria to this game are Pareto efficient since that the public
good is provided by just enough contributions. However, there are
many reasons to think that this equilibrium is not a very valid descrip-
tion of how this game would actually be played. Most importantly,
since there are so many Nash equilibria, how would the agents ever
coordinate on one of them? Secondly, each of the pure strategy Nash
equilibria involves ex ante identical agents playing different strategies.
An equilibrium where identical agents played identical strategies would
seem more plausible. For these reasons, a more plausible equilibrium
is a mixed strategy equilibrium where every agent contributes with a
probability determined in equilibrium. Since there may be many such
equilibria, we will only consider the symmetric mixed strategy equilib-
rium where σi = σ for all i. This restriction is consistent with our
criticism of the asymmetry inherent in the pure strategy Nash equilib-
ria.
Recall that for a mixed strategy to be a best response for agent

i, she must be indifferent among the pure strategies that she mixes
over. Thus, if agent i is willing to play σi against n− 1 players con-
tributing with probability σ, it must be true that ui (contribute, σ) =
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ui (not contribute, σ) or

1− c = 1− (1− σ)n−1

Using this condition, we can solve for the equilibrium value: σ = 1 −
c

1
n−1 . Note that in some ways this equilibrium is more consistent with
the predictions of Olsen. As n gets large, σ goes to 0 while if c goes
to zero σ goes to 1.

13.1. Multiple Contributions. Now we will consider an exten-
sion of this model where the public good is provided only if k out of
the n. It is easy to see from the logic presented in the previous section
that there are many pure strategy equilibria where exactly k agents
make contributions. Clearly, in such an equilibrium, any agent not
contributing has no incentive to defect and make a contribution as it
will cost c and not change the probability of obtaining the public good.
Conversely, any contributor who defected would cause the good to not
be provided. Since saving the contribution cost is less valuable than
losing the public good, such a defection will not occur. Therefore,
there is an equilibrium corresponding to contributions by every possi-
ble combination of k agents. From a basic result in combinatorics, we
know that there are exactlyµ

n
k

¶
≡ n!

k! (n− k)!

distinct Nash equilibria where n! = 1 · 2 · 3... ·n. The notation
µ

n
k

¶
,

known as the binomial coefficient, represents the number of combina-
tions of k elements drawn from n objects.
The plausibility of these pure strategy equilibria are perhaps even

less compelling than the pure strategy equilibria of the one contribu-
tion game. So again we will compute the symmetric mixed strategy
equilibria for this game.
Let x−i represent a realization of σ−i so that it is number of contri-

butions made agents other than i. The payoff to i from contributing
is

Pr (x−i < k − 1) · 0 + Pr (x−i ≥ k − 1) · 1− c

while the payoff from abstaining is

Pr (x−i < k) · 0 + Pr (x−i ≥ k) · 1
As before, playing mixed strategies requires that the agents be indiffer-
ent among the pure strategies in the mixture. Equating these payoffs
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and doing a bit of algebra, the necessary condition for mixing is

Pr (x−i = k − 1) = c

This condition has a nice intuitive interpretation. Clearly, contributing
only has a positive benefit if exactly k − 1 other agents contribute.
Thus, the payoff from the contributing to the public good is discounted
by the probability that a contribution is pivotal. Because agents will
be mixing, this expected benefit has to be equated to the contribution
costs c.
Since we are assuming that all agents are independently playing the

samemixed strategy σ,we can compute the exact value of Pr (x−i = k − 1)
as it equals the probability of obtaining exactly k−1 successes in n−1
trials with a success probability of σ. Thus, a standard result in prob-
ability theory implies that

Pr (x−i = k − 1) =
µ

n− 1
k − 1

¶
σk−1 (1− σ)n−k

Therefore, computing the symmetric mixed strategy equilibrium in-
volves find the set of σ that solve:µ

n− 1
k − 1

¶
σk−1 (1− σ)n−k = c

or

σk−1 (1− σ)n−k =
(k − 1)! (n− k)!

(n− 1)! c

Before characterizing exactly what the set of solutions looks like, it
is worthwhile to look at a couple of examples. First, suppose that
n = 5 and k = 3. Then the equation reduces to σ2 (1− σ)2 = 1

6
c. The

solid lines of Figure 5.9 plots the left and right sides of this equation.
Note that as long as c is sufficiently low, there are two solutions to the
equation which represent distinct mixed strategy equilibria, σ∗L < 1

2
<

σ∗H . It is easy to see how the equilibrium mixtures change as a function
of c. The effect of increasing c is to raise σ∗L and lower σ

∗
H .

Insert Figure 5.9
Figure 5.9 also plots the conditions for k = 4 and k = 5 which are

given by σ3 (1− σ) = 1
4
c and σ4 = c respectively. The case of k = 4

is similar to k = 3 in that it also has two mixed strategy equilibria.
However, σ3 (1− σ) > σ2 (1− σ)2 if σ > 1

2
. This effect plus the fact

that 1
4
c > 1

6
c implies that σ∗H is increases in k. Since σ3 (1− σ) <

σ2 (1− σ)2 if σ < 1
2
, σ∗L also increases. In the case of k = 5, the fact

that σ4 is an increasing function for 0 ≤ σ ≤ 1 implies that there can
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only be one mixed equilibrium. It has a higher contribution probability
than σ∗L when k = 4 which increases in c.
Many of the implications of the examples generalize. First regard-

less of n and k, there can be at most two mixed strategy equilibria. To
see this, let c(σ) be the level of costs that supports σ as the equilibrium
mixing strategy or

c (σ) =

µ
n− 1
k − 1

¶
σk−1 (1− σ)n−k

Differentiating with respect to σ, we find that

c0 (σ) =

µ
n− 1
k − 1

¶
[(k − 1) (1− σ)− (n− k)σ]σk−2 (1− σ)n−k−1

It is easy to see that if k < n the function c (σ) is single peaked since

c0 T 0 if σ S k − 1
n− 1

Thus, if k < n and c < c
¡
k−1
n−1
¢
≡ cmax, there will be two mixed strategy

equilibria, but none if c > cmax.13 If k = n or k = 1, there will be one
mixed strategy equilibrium so long as c < 1.
We can also use this result to say something about what happens

as n gets very large. Since c(0) = 0, we know that that cmax goes to
zero as n gets large. Thus, in the limit there are no mixed strategy
equilibria.
For σ∗H > k−1

n−1 , contribution probabilities fall in c and n and increase
in k. For σ∗L < k−1

n−1 , the contribution probabilities fall increase in c

and n. For σ∗L < k−1
n
, contributions are falling in k while they increase

in k if σ∗L ∈
¡
k−1
n
, k−1
n−1
¢
.14

14. Exercises

Exercise 5.1. In the Hotelling model, show that there is no equilib-
rium in pure strategies if there are three parties for any specification of
the parties objectives.. What is the Nash equilibrium with four parties
if parties maximize vote share?

Exercise 5.2. Show that the prisoner’s dilemma has no mixed
strategy equilibrium.

13Of course in the unlikely event that c = cmax, there will be a single symmeteric
mixed stratgey equilibrium.

14Some derivations useful in proving these claims is available in the appendix
to Palfrey and Rosenthal (1988).
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Exercise 5.3. Find the mixed strategy equilibrium of the following
game:

1\2 L R
T 2, 1 0, 2
B 1, 3 3, 0

Exercise 5.4. Verify that the two definitions of Nash Equilibrium
are equivalent. Hint show that if a strategy profile satisfies the first
then it must satisfy the second, and then that if it satisfies the second
it must satisfy the first.

Exercise 5.5. Prove Theorem 5.5.

Exercise 5.6. * Prove Theorem 5.6.

Exercise 5.7. *Show that an upper hemi-continuous correspon-
dence that is single valued is a continuous function.

Exercise 5.8. Characterize the pure strategy Nash equilibria to the
International Externality game when k1 = k2.

Exercise 5.9. Verify that if f(·, ·) has increasing differences in
(x, p) then for all p ≤ p0and x ≤ x0 f(x, p0) − f(x, p) ≥ f(x0, p0) −
f(x0, p).

Exercise 5.10. *Prove parts a-c of Proposition 5.2.

Exercise 5.11. *Assume that X is a compact subset of Rn and R
is a lower continuous partial order on X. Show that if u(x) is a utility
function that represents R on X then u(·) is upper semi-continuous on
X. Now show that if u(x) is upper semi-continuous on X then any
preference relation that it represents is lower continuous.

Exercise 5.12. Consider the Palfrey-Rosenthal contribution game.
Construct an asymmetric Nash equilibrium where l agents contribute
(σi = 1), m agents do not contribute (σi = 0), and n −m − l agents
choose a mixed strategy σi = q ∈ (0, 1). Show that if l > 0 or m > 0,
q∗ is unique. Is this a stable equilibrium?

Exercise 5.13. Consider an extension of the Palfrey-Rosenthal
model where contributions are refunded if the public good is not pro-
vided (i.e. fewer than k contributions are made). Characterize the
pure strategy and mixed strategy equilibria of this game.



CHAPTER 6

Bayesian Games in the Normal Form

In the normal form games considered above there was no uncer-
tainty. The agents know their own payoffs and those of their oppo-
nents. More precisely, the entire structure of the game involves what
is called common knowledge —each player knows all the details of the
game and each player knows that each player knows the details of the
game, and each player knows that each player knows that each player
knows ..... ad infinitum. However, in many settings this assumption
is inappropriate and we might suspect that interesting strategic incen-
tives are created by uncertainty. Returning to the“Terrorist Hunt”
game,

Table 6.1: The Terrorist Hunt
FBI\CIA Kingpin Operative
Kingpin 2,2 0,1
Operative 1,0 1,1

We might think that the CIA is not sure if the FBI prefers arresting
Operatives to not arresting anyone. The loss of an operative may not
lower terrorism risks but involve dramatic administrative headaches.
So the CIA may think that it is possible that the game looks like

Table 6.2: Modified Hunt 1
FBI0\CIA Kingpin Operative
Kingpin 2,2 0,1
Operative 0,0 0,1

But suppose that the CIA fears that the FBI may have yet a dif-
ferent preference ordering, preferring to arrest Operatives more than
Kingpins, because Operatives usually fold under the pressure providing
lots of information, whereas Kingpins remain silent. In this case the
game might look like

115
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Table 6.3: Modified Hunt 2
FBI00\CIA Kingpin Operative
Kingpin 1,2 0,1
Operative 2,0 2,1

In this setting the CIA’s calculation of which strategy to play may
differ. We saw that in the original game the pure strategy Nash equi-
libria are (Kingpin, Kingpin) and (Operative, Operative). But if the
CIA thinks that the FBI is possibly of one of these alternative types
then it is less clear which strategy the CIA should play. In this case we
cannot apply our notion of Nash equilibria or dominance to the game.

In this section we develop tools to analyze richer models involving
agents that do not know the payoffs of the other players. This feature
is termed incomplete information. The standard practice (origi-
nated by Harsanyi 1967-68) is to convert such a game into one where
a fictional player (nature) moves first drawing the utility functions of
the agents from a probability distribution that is known to the players.
Following this draw, agents simultaneously select their actions. This
approach is called one of imperfect information. So in the modified
“Terrorist Hunt” we might think that Nature selects the preferences (or
type) of the FBI by tossing a fair three sided die —making each type
equally likely. The FBI knows its type and chooses an action. The
CIA does not know the FBI’s type and chooses its action. In this case,
specifying strategies for the CIA is somewhat more complicated. In as-
sessing the desirability of a strategy, the CIA needs to form conjecture
about the strategy that each of the three possible FBI types will use.
Given such a conjecture, the CIA can compare the expected utility of
choosing Kingpin or Operative. Conversely, given a conjecture about
the CIA’s strategy, each of the possible types of FBI should choose a
strategy that maximizes its utility. In essence we have translated a
problem in which the CIA does not know the preferences of the FBI
to a new game in which the CIA is playing one of three possible FBI
players (which are drawn from a known distribution) and each player
(three FBI types plus the CIA) are all playing strategies.
Aside from the possibility that agents may not know each others

preferences, it is possible that agents do not know their own prefer-
ences. Returning to the original “Terrorist Hunt” problem, a more
realistic model involves a probability of catching a terrorist conditional
on strategies by the players. We might think that the original matrix
is justified by the following matrix.
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Table 6.4: Terrorist Hunt with Uncertainty
FBI\CIA Kingpin Operative
Kingpin 10× 1

5
+ 0× 4

5
, 10× 1

5
+ 0× 4

5
0,6× 1

6
+ 0× 5

6

Operative 6× 1
6
+ 0× 5

6
,0 6× 1

6
+ 0× 5

6
, 6× 1

6
+ 0× 5

6

Here 10 is the utility payoff to catching a Kingpin and 1
5
is the prob-

ability of catching a Kingpin if both agencies cooperate on Kingpin
searching. Alternatively 0 is the payoff to failed Kingpin search-
ing which occurs with probability 4

5
when the agencies cooperate on

Kingpin searching. While the overall payoffs are the same in this
matrix and the earlier one, this representation explicitly captures the
fact that payoffs may depend on both strategies and some additional
randomness in the world.
A comment is in order about the role of common knowledge in

games of incomplete information. As we pointed out at the beginning
of the chapter, we assume in games of complete information that all
elements of the game — players, strategies, and payoffs — are known to all
players and all players know this. In games of incomplete information,
we still maintain the common knowledge assumption. In particular, we
assume that all players known the probability distribution that Nature
uses in selecting player types and that all players know that all players
know and so on.

1. Formal Definitions

We now modify our basic normal form structure Γ to account for
both imperfect information about player types and payoffs that depend
on additional randomness.1 We begin by adding to Γ player types
and a known lottery over these types and an additional random state
variable.

(1) Types: We assume that for each player, i ∈ N there is a finite
set Θi of possible types. In the first example of this section,
this set is a singleton for the CIA and it includes three elements
for the FBI. By θ−i and Θ−i we denote a profile (and the set
of such profiles) of types for all players other than i.

(2) Random state: In addition there is a random variable ω ∈
Ω (which is assumed to be a finite state). In the second
example of this section ω could be thought of as the realization
of searching given different strategies. So ω specifies whether

1Some readers may want to review probability theory in the mathemtical ap-
pendix before proceeding.
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a Kingpin or Operative will be found given every strategy in
S.

(3) Natures randomization: At the beginning of the game na-
ture selects the vector of player types θ = (θ1, ..., θn) ∈ Θ =Q

i∈N Θi and ω ∈ Ω from a joint lottery assigning each pair
(θ, ω) probability p(θ, ω). By p(θ−i, ω | θi) we denote the
conditional probability of θ, ω given θi.

(4) Strategies: Each player selects an action si in the set Si.
Expected utilities: For each possible strategy profile s, type θi and

state ω agent i has utility ui(si, s−i, θi, ω). Given her type θi agent i’s
conditional expected utility from strategy profile s is

Eui(s; θi) =
X
ω∈Ω

p(θ−i, ω | θi)ui(s, θi, ω).

Accordingly a normal form Bayesian game is defined by the collection:
hN,Ω, {Si,Θi, u(·, ..., ·)}i∈n, p(·, ·)i . We sometimes use the shorthand
hN,Ω, S,Θ, u, pi . Just as normal form games may be defined with non
finite strategy spaces, Bayesian games may be defined with infinite type
and action spaces. We provide several such examples below.
In a normal form a strategy profile is just a list s ∈ S. In a

Bayesian game we need to record the strategy that each possible type
of player will use. Accordingly in a Bayesian game a strategy for
player i is a function φi(θi) : Θi → Si that selects a strategy si ∈ Si
for each possible type θi ∈ Θi. In the version of “Terrorist Hunt” in
which the CIA is not sure of the FBI’s preferences, if we consider the
FBI types as ΘFBI ={standard, pro−Kingpin, pro−Operative}each
occurring with equal probability then an example of a strategy for the
FBI is φFBI(standard) = Kingpin, φFBI(pro−Kingpin) = Kingpin,
φFBI(pro−Operative) = Operative.
In a Bayesian normal form game we can extend the idea of Nash

equilibria to the concept of Bayesian Nash equilibria. Since discussion
of best responses when a strategy itself is a function is a little com-
plicated, the easiest way to define a Bayesian Nash equilibrium is to
extend our second definition of Nash equilibrium.

Definition 6.1. Given a normal form Bayesian game hN,Ω, S,Θ, u, pi
a Bayesian Nash equilibrium is a profile of strategies, (φ∗1(·), ...φ∗n(·))
such that for every i ∈ N , for each θi ∈ Θi

(6.1) EUi(φ
∗
i (θi), φ

∗
−i(·); θi) ≥ EUi(s

0
i, φ

∗
−i(·); θi) for every s0i ∈ Si.

Thus, in a Bayesian Nash equilibrium, every type of each player
chooses strategies that maximize their expected utility given strategies
of all other player types and the probability distribution of those types.
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Returning to the multiple-type FBI game, we can solve for a Bayesian
Nash equilibria. Suppose that the FBI strategy is as specified above,
φFBI(standard) = Kingpin, φFBI(pro−Kingpin) = Kingpin, φFBI(pro−
Operative) = Operative. In this game the CIA has only one possi-
ble type and there is no uncertainty other than FBI types so we can
suppress ω. Given this strategy, we have

EUCIA(Kingpin,φFBI(·)) =
2

3
2 +

1

3
0 =

4

3

EUCIA(Operative,φFBI(·)) =
2

3
0 +

1

3
1 =

1

3

Thus, the CIA’s best response to φFBI(·) is to select Kingpin. Given
this we must verify if any of the potential FBI types wish to deviate.
For the standard type FBI we know that matching the CIA is a best
response so φFBI(standard) = Kingpin is a best response. For the pro-
Kingpin type selecting Kingpin when the CIA selects Kingpin results
in the highest possible payoff (2) and thus no desirable deviation exists.
Finally, for the pro-Operative FBI, selecting Operative when the CIA
selects Kingpin results in utility of 2 while a deviation to Kingpin
results in utility 1, thus no desirable deviation exists. This means that
we have characterized a Bayesian Nash equilibrium to the game.

2. Application: Trade restrictions

We consider a simple setting involving two nations that are con-
templating restrictive trade policies. Let N = {1, 2} and suppose that
each country has two possible types Θi = {u, b} A type u country
wishes to limit its imports from the other country unilaterally, while
a type b country wishes to pursue a bilateral policy of limiting trade
only if the other country does so. We assume the country types are
independently drawn with type u occurring with probability p ∈ (0, 1).
The strategy space for each country is S = {l, f} where l denotes a
enacting an import limit and f denotes a free-trade policy. Country i
has the following payoffs

ui(si, s−i; θi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if si = l, s−i = f and θi = u
2 if si = f, s−i = f and θi = u
1 if si = l, s−i = l and θi = u
0 if si = f, s−i = l and θi = u
3 if si = f, s−i = f and θi = b
2 if si = l, s−i = f and θi = b
1 if si = l, s−i = l and θi = b
0 if si = f, s−i = l and θi = b
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A strategy is a mapping si(θi) : {u, b}→ {l, f}. Note that a u country
always gets a higher payoff from l regardless of the actions of the other
country. Thus, if there were common knowledge that both countries
were type u then the game would be a Prisoners’ Dilemma and each
country would have a dominant strategy to choose l. Alternatively,
if there was common knowledge that both countries were type b then
there would be two pure strategy Nash equilibria (f, f) and (l, l).
In computing, Bayesian Nash equilibria, it is often useful to make

conjectures about equilibrium strategies and check to see if they satisfy
the required conditions. Since we know that a type u country has a
dominant strategy of selecting l every equilibrium will involve si(u) = l.
Thus, the only possible equilibria are (si(u), si(b)) = (l, l) and (l, f).
Thus, we first investigate the possibility that si(u) = l and si(b) = f
for both i = 1, 2. If country 2 uses this strategy, then s2 = l with
probability p and s2 = f with probability (1 − p). Thus, country 1’s
expected utility is

Eu1(s1, θi = u) =

½
p+ (1− p)3 if s1 = l
2(1− p) if s1 = f

Eu1(s1, θi = b) =

½
2(1− p) + p if s1 = l
3(1− p) if s1 = f

When is the conjectured strategy a best response? The strategy
si(u) = l is a best response since type u has a dominant strategy
to erect trade barriers. Alternatively, si(b) = f is a best response if

3(1− p) ≥ 2(1− p) + p

which is true as long as p ≤ 1
2
. Since the calculations for country 2 are

identical, we know that for p ≤ 1
2
the profile si(u) = l and si(b) = f is

a Bayesian Nash equilibrium.
Now we lets check to see if si(b) = l for both countries can be a

best response. We note that if country 2 uses the strategy si(θi) = l
regardless of θi then country 1 with type b has the expected utility

Eu1(s1, θi = b) =

½
1 if s1 = l
0 if s1 = f.

This means that regardless of p, the strategies si(b) = l, si(u) = l for
both countries is a Bayesian Nash equilibrium. So we have seen that
there is always a Bayesian Nash equilibrium in which bilateral limits
(l, l) occur. Moreover, if p ≤ 1

2
there is a second equilibrium with

si(u) = l and si(b) = f. In this equilibrium free trade occurs if both
countries are of type b, which happens with probability (1 − p)2. So
the possibility of bilateral policies requires that a country is not the
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unilateral type and the expectation that her opponent is also unlikely
to be the unilateral type.

3. Application: Jury Voting

As another example of Bayesian Nash Equilibrium, we now consider
a simple example of the jury model developed by Austen-Smith and
Banks (1997). Suppose that three jurors N = {1, 2, 3} are responsible
for deciding whether to convict or acquit a defendant. Thus, they
collectively must choose an outcome x ∈ {c, a}. The jurors simulta-
neously cast ballots vi ∈ Si = {c, a} and the outcome is chosen by
majority rule. Each player faces uncertainty about whether or not the
defendant is guilty,G, or innocent, I. So the set of state variables can
be denoted as Ω = {G, I}. In the guilty state the jurors receive utility
1 from convicting and 0 from acquitting. Alternatively, in innocent
state the jurors receive utility 1 from acquitting and 0 from convicting.
Each player assigns prior probability π > 1

2
to the guilty state.

If we assumed that each of the jurors had identical information,
each juror would receive an expected utility of π from a guilty verdict
and 1 − π from an acquittal. Since π > 1 − π, the Nash equilibrium
that survives the elimination of weakly dominated strategies calls for
each juror to vote guilty.
However, assume that before voting each player receives a private

signal concerning the defendants guilt θi ∈ {0, 1}. We assume that this
signal is informative in the sense that a juror is more likely to receive
the signal θi = 1 when the defendant is guilty than she is when the
defendant is innocent. Furthermore, to keep things very simple, we
assume that the probability of receiving the guilty signal (θi = 1) when
the defendant is guilty is the same as that of receiving the innocent
signal (θi = 0) when the defendant is innocent. Formally, we assume
that Pr(θi = 1 | ω = G) = Pr(θi = 0 | ω = I) = p > 1

2
which obviously

requires that Pr(θi = 0 | ω = G) = Pr(θi = 0 | ω = I) = 1− p.
After receiving her signal, voter i will select her vote v (θi) to max-

imize the probability that guilty defendant are convicted and innocent
defendants are acquitted. Suppose that each voter uses a straightfor-
ward strategy vi(0) = a and vi(1) = c of voting to convict when they
get a signal of 1 and voting to acquit when the get a signal of 0. To
verify whether this strategy combination constitutes a Bayesian Nash
equilibrium, we need to verify that voter 1 is willing to use this strategy
if she conjectures that voters 2 and 3 are using this strategy. Given
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these conjectures, the expected utility of voting to convict is

Pr(θ2 = 1 and θ3 = 0 and ω = G | θ1)+
Pr(θ3 = 1 and θ2 = 0and ω = G | θ1)+
Pr(θ2 = 1 and θ2 = 1 and ω = G | θ1)+
Pr(θ2 = 0 and θ2 = 0 and ω = I | θ1)

while the expected utility of voting to acquit is

Pr(θ2 = 1 and θ3 = 0 and ω = I | θ1)+
Pr(θ3 = 1 and θ2 = 0and ω = I | θ1)+
Pr(θ2 = 0 and θ2 = 0 and ω = I | θ1)+
Pr(θ2 = 1 and θ2 = 1 and ω = G | θ1).

Note that the last two terms of each sum are the same and thus cancel
out in comparing these two expected utilities. Accordingly voting to
convict is a best response if

Pr(θ2 = 1 and θ3 = 0 and ω = G | θ1) + Pr(θ3 = 1 and θ2 = 0and ω = G | θ1) ≥
Pr(θ2 = 1 and θ3 = 0 and ω = I | θ1) + Pr(θ3 = 1 and θ2 = 0 and ω = I | θ1)
while voting to acquit is a best response if the reverse weak inequality
holds. Since these expressions depend on conditional probabilities
of observing combinations of the state variable and the signals of the
remaining jurors, juror 1 must use Bayes’ Rule to evaluate each term.
Suppose that juror 1 receives θ1 = 1. If can be easily shown that

Pr(θ2 = 1 and θ3 = 0 and ω = G | θ1 = 1)

= Pr(θ3 = 1 and θ2 = 0 and ω = G | θ1 = 1) =
πp2 (1− p)

πp+ (1− π)(1− p)

and

Pr(θ2 = 1 and θ3 = 0 and ω = I | θ1 = 1)

= Pr(θ3 = 1 and θ2 = 0 and ω = I | θ1 = 1) =
(1− π) p (1− p)2

πp+ (1− π)(1− p)

Thus, juror 1 will choose vi (1) = c if

2
πp2(1− p)

πp+ (1− π)(1− p)
≥ 2 (1− π)p(1− p)2

πp+ (1− π)(1− p)

or after simplifying

πp(1− p)p ≥ (1− π)p(1− p)(1− p).
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We can rearrange this expression to

πp2(1− p)

πp2(1− p) + (1− π)p(1− p)2
≥ 1
2
.

The left hand side is just the conditional probability of guilt given two
signals of 1 and one signal of 0. In other words agent 1 is willing to
vote to convict if she thinks that the defendant is more likely to be
guilty than innocent when she conditions on her signal (one of the 1
signals) and the assumption that she is pivotal so that the remaining
two agents have received different signals. Similarly, we can express
the requirement for a vote of innocence conditional on a signal of 0 as

πp(1− p)2

πp(1− p)2 + (1− π)p2(1− p)
≤ 1
2
.

So the conclusion is that in a Bayesian equilibrium to this game a voter
must vote for the action which she prefers in the state she believes is
more likely given that she conditions on both her own signal and the
profile of other signals that must occur for her to be pivotal. Austen-
Smith and Banks note that in many cases this simple strategy (voting
to convict if θi = 1 and voting to acquit if θi = 0) is not equilibrium
behavior. In this example this point can be demonstrated by choosing
parameters π and p for which one of the last two inequalities does
not hold. Of course alternative types of strategies might be played.
Voters can randomize for some types, or they may choose to vote the
same way regardless of their type, or different voters may use different
strategies. Fedderson and Pessendorfer (1998) consider the properties
of equilibria to this game as one varies the voting rule and population
size.

4. Application: Jury Voting with a Continuum of Signals*

One extension of the jury model involves a larger type space.2 Sup-
pose instead of receiving a binary signal, each juror receives a signal
θi ∈ [0, 1]. One way to model the case of an informative signal taking
on a continuum of possible values is to assume that θi is drawn from
a state conditional distribution F (θi|ω) with a differentiable density
function f(θi|ω) that satisfies the monotone likelihood ratio condition.

Definition 6.2. The conditional densities satisfy the strict monotone
likelihood ratio condition (SMLR) if f(θi|G)

f(θi|I) is a strictly monotone func-
tion of θi on [0, 1].

2Duggan and Martinelli (2001) and Meirowitz (2002) consider this extension.
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For the convenience, we assume that f(θi|G)
f(θi|I) is strictly increasing.

To see why this assumption is important, note that Bayes’ rule implies
that

Pr(G|θi) =
f(θi | G)π

f(θi | G)π + f(θi | I)(1− π)

=

f(θi|G)
f(θi|I) π

f(θi|G)
f(θi|I) π + (1− π)

It can easily be verifies that Pr(G|θi) is increasing in θi if and only if
f(θi|G)
f(θi|I) is increasing in θi. Thus, the SMLR condition implies that the
higher the signal agent i receives the higher her posterior belief about
the probability that the state is ω = G.
To keep things simple, we will focus exclusively on symmetric strate-

gies where voters who receive the same signal choose the same strat-
egy. Thus, a symmetric strategy profile is characterized by a mapping
vi(θi) : [0, 1] → {c, a}. Following the logic from above, a Bayesian
Nash equilibrium must involve a strategy that is optimal when the
agent conditions on her private information and the conjecture that
she is pivotal. An agent will vote to convict if she thinks the probabil-
ity of guilt is no less than 1

2
and she will vote to acquit if she thinks the

probability of guilt is no more than 1
2
. Given that higher signals are

better indicators of guilt, one natural conjecture is that the strategy
must be weakly increasing. For low values of θi an acquittal vote is
cast and for high values of θi a conviction vote is cast. Let bθ ∈ [0, 1]
denote a cutpoint and lets assume that agents i ∈ N\i use the strategy

vi(θi) =

(
c if θi ≥ bθ
a if θi < bθ

Suppose that the juror decision rule is a q-rule, requiring at least q ≥
n+1
2
votes to convict. Thus, if players N\i use the cutpoint strategy

then the posterior probability of {ω = G} given θi and that i is pivotal
is given by

(6.2) pr(G | piv, θi;bθ) =
πfG bF n−q−1

G

h
1− bFG

iq−1
πfG bFn−q−1

G

h
1− bFG

iq−1
+ (1− π)fI bFn−q−1

I

h
1− bFI

iq−1
where fω = f(θi | ω) and bFω = F (bθ | ω). We leave the derivation of
this expression as an exercise. This probability is a function of the
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parameter bθ and we make this point explicit in the left hand side. In
this model the existence of a symmetric equilibrium in which voters
use a cutpoint hinges on finding a value of bθ such that

pr(G | piv,bθ;bθ) = 1

2

and demonstrating that if θi < bθ pr(G | piv, θi;bθ) ≤ 1
2
and if θi > bθ

pr(G | piv, θi;bθ) ≥ 1
2
. While analysis of examples is cumbersome, it

is easy to come up with conditions on the primitives of the game to
insure that such a bθ ∈ (0, 1) exists. First, since pr(G | piv, θi;bθ) ≥ 1

2
if and only if

πf(θi | G)F (bθ | G)n−q−1 h1− F (bθ | G)iq−1
(1− π)f(θi | I)F (bθ | I)n−q−1 h1− F (bθ | I)iq−1 =
f(θi | G)
f(θi | I)

πF (bθ | G)n−q−1 h1− F (bθ | G)iq−1
(1− π)F (bθ | I)n−q−1 h1− F (bθ | I)iq−1 ≥ 1

the strict monotone likelihood ratio conditions implies that if pr(G |
piv,bθ;bθ) = 1

2
then θi < bθ implies pr(G | piv, θi;bθ) ≤ 1

2
and θi > bθ im-

plies pr(G | piv, θi;bθ) ≥ 1
2
. This means that existence of an equilibrium

hinges on establishing the existence of a solution to the equation

pr(G | piv,bθ;bθ) = 1

2

If pr(G | piv, 0; 0) ≤ 1
2
≤ pr(G | piv, 1; 1) then the intermediate value

theorem implies that such a cutpoint will exist since the function pr(G |
piv, ·; ·) is continuous. For a large class of games these boundary
conditions will be satisfied.
So while the simple binary type model demonstrates that equilibria

where everyone uses the same rule and voting is determined by private
information will not exist, equilibria of this type generally exist in the
continuum model. In the case of unanimity rule, the modeling tech-
nology is consequential for the conclusions that can be reached about
the desirability of particular political institutions. Using the binary
model, Fedderson and Pesendorfer (1998) show that unanimity rule is
an uniquely poor way to aggregate information for large populations
because in equilibrium voters condition on the assumption that every-
one else is voting to convict. In the continuummodel (Meirowitz 2002)
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unanimity rule turns out to be as good as the other voting rules in some
cases.

5. Application: Public Goods and Incomplete Information

In this section, we consider a version of the Palfrey-Rosenthal con-
tribution game where potential contributors are uncertain about the
contribution costs of other players. To keep the model as close to
the one we have already analyzed, we assume that every agent receives
a utility of 1 if at least k agents contribute and 0 otherwise. Agent
i pays a cost ci to contribute where we assume that ci is distributed
uniformly on [0, 1]. Each agent learns their own costs, but remain
uncertain about the costs of others.

5.1. k = 1. First we consider the case where a single contribution
is necessary for the provision of the good. Since ci < 1 with certainty
for all contributors, there are always n Bayesian Nash equilibrium cor-
responding to agent i contributing with certainty. However, as we did
before, we will concentrate on symmetric equilibrium where all player
types with the same cost play the same strategy. We therefore focus
on equilibria in cutpoint strategies. In such equilibria, agent i con-
tributes if and only if ci < bc. If we assume that all players other than
i choose a cutpoint strategy, agent i utility from contributing is 1− ci.
To compute her utility for not contributing, note that she receives 1
as long as there as at least one contributor. Since c is distributed
uniformly on [0, 1], other contributors contribute with probability bc so
that the probability of no contributions is [1− bc]n−1. Thus, agent i’s
utility from not contributing is 1−[1− bc]n−1 . Thus agent i contributes
so long as

[1− bc]n−1 ≥ ci

We can use this expression to solve implicitly for bc since agent i must
be indifferent at the cutpoint. Thus, we have bcn−1 + bc = 1. It is very
easy to show that bc is declining in n and goes to zero for very large
n. In turn, this means that the probability that any individual will
contribute goes to zero as the group expands. Thus, the incomplete
information version also predicts that there will be more free-riding in
large groups.

5.2. k > 1∗. Now we turn to the case where multiple contributions
are required for the provision of the good. We again assume that agents
use cutpoint strategies and contribute only if ci ≤ bc.
Let x−i be the realized number of contributions from agents other

than i. From arguments identical to those of the last chapter, we know
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that agent i’s net utility from contributing is

Pr (x−i = k − 1)− ci

Since contribution probabilities are bc, we can also show that
Pr (x−i = k − 1) =

µ
n− 1
k − 1

¶bck−1 (1− bc)n−k
Since the agent i must be indifferent at the cutpoint cost, we again get
an implicit solution for bc :µ

n− 1
k − 1

¶bck−2 (1− bc)n−k = 1
Note that this solution is very similar to that of the mixed strategy
equilibrium with complete information. The main difference is that bc
plays the role of σ∗. Thus, many of the implications of our previous
analysis carry over.

To reduce notation let Π(bc) = µ
n− 1
k − 1

¶bck−2 (1− bc)n−k so that
our equilibrium condition is Π(bc) = 1. First note that

Π0 T 0 if bc S k − 2
n− 2

Thus, so long as 2 < k < n, Π(bc) is single peaked for bc ∈ [0, 1]. Thus,
if 2 < k < n and maxΠ > 1, there will be two equilibrium cutpoints bcH
and bcL just as there were two symmetric equilibria in mixed strategies.
If maxΠ < 1, there will be no cutpoint equilibria.3

As before, it is easy to demonstrate that the cutpoint equilibria
disappear as n gets very large. Note that the bc that maximizes Π
is bounded by k−2

n−2 . Thus, as n gets large, this maximizer goes to
zero. Since Π(0) = 0, lim

n→∞
[maxΠ] = 0. Thus for sufficiently large n,

maxΠ < 1. We leave it to the readers to verify that the effects of
n and k on bcH and bcL are essentially the same as the effects of n and
k on σ∗L and σ∗H in the symmetric mixed strategy equilibrium of the
previous chapter.

6. Application: Electoral Competition under Uncertainty

We now return to the Hotelling model of candidate competition
with policy motivated candidates and consider two extensions. We
first assume that candidate preferences are known (candidates have
ideal points of 0 and 1 as before) but that instead of knowing that the

3In the unlikely event that maxΠ = 1, there will be a unique cutpoint
equilibrium.
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voters are arranged uniformly on the unit interval, we assume that the
candidates believe that the median voter’s location is randomly drawn
from the uniform distribution on [0, 1]. This model is an example of
models treated by Wittman (1977) and Calvert (1985). To formulate
this model as a Bayesian game, we let Ω = [0, 1] denote the set of
possible locations of the median voter. Since candidate preferences
are common knowledge in this example the type spaces are singletons.
So all of the uncertainty in the game is captured by the probability
distribution F (ω) = ω on [0, 1]. Here, we assume that candidate
preferences over policy are quadratic so that u1(x) = −x2 and u2(x) =
−(1 − x)2. Given two platforms s1 < s2 candidate 1 wins if the
median is closer to s1 than s2. This is true if the median is less than
s1+s2
2

. Since the median is uniformly distributed, candidate 1 wins with
probability s1+s2

2
. In this case candidate expected utilities are

Eu1(s1, s2) =

½
−s21 s1+s22

− s22(1− s1+s2
2
) if s1 < s2

−s22 s1+s22
− s21(1− s1+s2

2
) if s1 > s2

and

Eu2(s1, s2) =

½
−(1− s1)

2 s1+s2
2
− (1− s2)

2(1− s1+s2
2
) if s1 < s2

−(1− s2)
2 s1+s2

2
− (1− s1)

2(1− s1+s2
2
) if s1 > s2

.

To construct an equilibrium, suppose that candidate 1 knows that can-
didate 2 will locate at z ≥ 1

2
. Then candidate 1 chooses s1 ∈ [0, z] to

optimize

max
s1
{−s21

s1 + z

2
− z2(1− s1 + z

2
)}

Note that we can ignore the possibility of choosing s1 > z because this
strategy is always dominated by s1 = z.4 To find the optimal choice
of s1, we can differentiate the objective function with respect to s1 and
set this derivative to 0. This first order condition is

−3
2
s21 − zs1 +

z2

2
= 0.

Solving for s1 yields two solutions, but only one is in the appropriate
range [0, 1]. This solution then gives us the best response function

s1(s2) =
s2
3
.

To be sure that this solution characterizes a local maxima (as opposed
to a local minima or saddle point) we need to check that the second
derivative of the objective function is negative when evaluated at this

4Indeed if candidate chose s1 > z, she would prefer candidate 2 to win.
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value. This second order condition simplifies to −2s2 and is negative
for any value of s2 ∈ (0, 1].
Similarly, treating s1 as a fixed parameter z ≤ 1

2
we can differentiate

candidate 2’s objective function

max
s2
{− (1− z)2

z + s2
2
− (1− s2)

2

∙
1− z + s2

2

¸
}

to find an optimal s2 ∈ [z, 1]. The solution is

s2(s1) =
2

3
+
1

3
s1.

We leave verification of the second order condition to the reader. A
Bayesian Nash equilibrium is then a strategy combination (s∗1, s

∗
2) that

solves the system

s∗1 =
1

3
s∗2

s∗2 =
2

3
+
1

3
s∗1.

The unique solution to this system is

s∗1 =
1

4
, s∗2 =

3

4
.

So with policy motivated candidates and uncertainty about voter pref-
erences candidate divergence is predicted.

6.1. Private Information about Candidate Preferences. Now
we consider a model where in addition to uncertainty about the loca-
tion of the median voter, candidates have private information about
their policy preferences. One simple example involves candidate 1
having ideal point θ1 ∈ {0, 1

2
} and candidate 2 having ideal point

θ2 ∈ {12 , 1}. So candidate the utility to candidate i of policy loca-
tion x is u(x) = −(θi−x)2. For simplicity we assume that each type is
drawn with equal probability and that choice of types across candidates
are independent. As before we assume that the median voter’s ideal
point is randomly drawn from a uniform distribution over [0, 1]. In
this case a strategy for candidate 1 is a mapping s1(θ1) : {0, 12}→ [0, 1

2
]

and a strategy for candidate 2 is a mapping s2(θ2) : {12 , 1} → [1
2
, 1].

For simplicity, we ignore the possibility of a candidate selecting a policy
that is further from her ideal point than the value 1

2
. One justification

for this assumption might be that parties constrain candidates from
crossing over into the far side of the ideological spectrum. In this case
suppose that candidate 2 uses the strategy s2(

1
2
) = a and s2(1) = b.

Now, in considering the optimal location for a candidate 1 with type
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θ1 =
1
2
note that any location s1 <

1
2
is dominated by the location 1

2
.

This is true because for fixed a, b the location 1
2
will win with probabil-

ity strictly higher than the probability that a location of s1 < 1
2
wins.

Moreover, conditional on winning a location of s1 < 1
2
is less desirable

to candidate 1 with type θ1 = 1
2
than a location of 1

2
. Accordingly,

we know that s1(12) = 0 is strictly dominant. Similarly, s2(12) =
1
2
is

strictly dominant. Now to find the best response for candidate 1 of
type θ1 = 0 we need to solve an optimization problem. If θ1 = 0 then
candidate 1’s objective function is

max
s1
{−s21

µ
s1 +

1
2

4
+

s1 + b

4

¶
−
(1
2
)2

2

µ
1−

s1 +
1
2

2

¶
− b2

2

µ
1− s1 + b

4

¶
}

Differentiating with respect to s1 and setting this term equal to 0, yields
the first order condition.

1

8
b2 − 1

2
bs1 −

1

4
s1 −

3

2
s21 +

1

16
= 0.

The solution (in the appropriate range) is

s1(0; b) =
1

12

√
4b+ 16b2 + 7− 1

6
b− 1

12
.

Now instead of solving candidate 2’s problem in an analogous manner,
we can notice that given s1(12) =

1
2
and s2(0) = a candidate 2’s problem

is the mirror image of candidate 1’s. This means that we can find the
equilibrium values of s2(1) = b and s1(0) = 1−b that solve the relevant
first order conditions by solving for b that satisfies the equality

1− b =
1

12

√
4b+ 16b2 + 7− 1

6
b− 1

12
.

The solution is b = 11
7
− 1

14

√
106 ' 0.836 03. Thus, the Bayesian Nash

equilibrium is s1(0) = 0.164 , s1(12) =
1
2
, s2(

1
2
) = 1

2
, s2(1) = 0.836. It is

instructive to compare the platforms of θ1 = 0 and θ2 = 1 with the out-
comes of the game where candidate preferences are known. One might
expect that the platforms would be more convergent given that each
candidate think that they might be playing against a moderate candi-
date. This intuition is misleading though since we observe platforms
in the candidate uncertainty game that are even more divergent. The
rationale for the seemingly anomalous outcome is that each extreme
candidate type knows that they will lose with certainty against a mod-
erate type unless they locate at the at the expected median. However,
they are indifferent between wining in losing if both candidate locate at
.5. So all the candidate uncertainty does is make the election outcome



7. APPLICATION: CAMPAIGNS, CONTESTS AND AUCTIONS* 131

more random. This additional randomness mitigate the penalty for
taking extreme positions. Therefore, the candidates polarize.

7. Application: Campaigns, Contests and Auctions*

An alternative perspective on electoral competition frames the com-
petition as a contest. Candidates each select a level of costly effort,
and a winner is chosen. More effort increases the likelihood that one
wins. This approach allows us to focus on the role of money in cam-
paigns. The model that we present here shares many features with
models of auctions — a topic we take up in some detail in Chapter 11.
Consider a set N = {1, ..., n} of candidates that are running for office.
Candidates compete by raising money and spending it on advertise-
ments. Let ai ∈ R1+ denote the level of fundraising by candidate i.
Given the accumulations a = (a1, ..., an), the winner is determined by
the function p(a) : Rn

+ → N. This function should be weakly increas-
ing. A reasonable example includes the mapping p(a) = argmaxi∈N ai
which awards the office to the candidate that raises the most money.5

Candidate i’s utility depends on the identity of the winner, the level of
accumulation ai and the candidates value of winning office, θi ∈ [0, 1].
For simplicity we assume that the values to winning office (types) of
each candidate are private information independently drawn from a
uniform distribution on [0, 1]. Specifically, candidate i’s utility takes
the form

ui(a) = θi1{p(a)=i} − ai

where 1{p(a)=i} is an indicator function that takes the value 1 if p(a) = i
and 0 otherwise. In this Bayesian game each candidate simultane-
ously selects their level of ai and then the payoffs are realized. In the
language of auction theory, this is a first price all play auction with
independent types. A Bayesian Nash equilibrium is a function (for
each candidate) that θi into ai. Once again, we focus on symmetric
equilibria in which each candidate uses the same strategy.
Directly solving the model for continuous strategy functions is often

quite difficult. A trick is to assume that the strategy function have a
specific functional form, solve for any free parameters, and verify that
the solutions constitute equilibria. Here we conjecture that players
j 6= i use a strategy of the form, aj(θj) = bθcj where b and c are
parameters to be determined. If players 2, ..., n use the conjectured

5An alternative interpretation of this model is to treat ai as the level of effort
or time that the candidate spends running for office.
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strategy, and candidate 1 selects a1 then the probability that 1 wins is
pr{maxj 6=i bθcj < a1} . This probability is

pr

½
max
j 6=i

θj <
³a1
b

´ 1
c

¾
=
³a1
b

´n−1
c
.

Accordingly the expected utility to player 1 with type θ1 from action
a1 is ³a1

b

´n−1
c
θ1 − a1.

Differentiating with respect to a1 yields the first order condition

θ1
n− 1
cb

³a1
b

´n−1−c
c

= 1,

and solving for a1 yields

(6.3) a1 = b

µ
cb

(n− 1)θ1

¶ c
n−1−c

.

We began by conjecturing that players j = 2, ..., n used a strategy of
the form aj(θj) = bθcj and found that player 1’s best response was to
use a strategy of the form given above. An equilibrium can then be
found by solving for values of b and c such that

(6.4) bθc1 = b

µ
cb

(n− 1)θ1

¶ c
n−1−c

.

Suppose that b = n−1
n
and c = n then substitution into the right hand

side yields

(6.5) a1 =
n− 1
n

Ã
n
¡
n−1
n

¢
(n− 1)θ1

! n
n−1−n

This simplifies to

a1 =
n− 1
n

θn1

confirming that b = n−1
n
and c = n correspond to an equilibrium.

Thus, a symmetric Bayesian Nash equilibrium is for each candidate to
accumulate

ai(θi) =
n− 1
n

θni .

The relationship between this model and other auctions can easily be
seen. In this game, a candidate suffers disutility ai regardless of
whether or not she wins. An alternative model might involve each
agent announcing promises to pay if they win. Another example of
this form would involve interest groups that make promises to bribe a
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committee chairman if their preferred nominee is conferred an appoint-
ment. In the chapter on mechanism design we will consider auctions of
this type and trace out the relationships between equilibria to different
types of auction.

8. Existence of Bayesian Nash equilibria*

When will a Bayesian Nash equilibrium exist?. In considering
this question it is useful to note that the Bayesian normal form games
considered are really just special cases of Normal form games, in which
each player simultaneously selects a strategy (where a strategy is a
mapping from Θi into Si) and the payoffs are defined as the agents’
expected utility over strategy profiles. An alternative statement is
also true, a Bayesian game is equivalent to a normal form game in
which every possible agent-type pair is a player of the normal form
game. The requirement that a Bayesian Nash equilibrium involves
strategies that are best responses for every possible type is equivalent
to the requirement that in this larger normal form game every player
(a player-type pairing) select a best response. This observation allows
us to apply our previous results to establish the existence of Bayesian
Nash equilibria in Mixed strategies to Bayesian normal form games
with finite type and action spaces.
Specifically, let us start with a Bayesian game hN,S,Θ, u, pi with

N,S,Θ all finite sets. Without loss of generality we denote types in the
following manner, Θi = {θ1i , ...., θkii }. We can define a new normal form
game Γ0 as follows: Let N 0 = {θ11, .., θk11 , .θ12, ..., θknn }. In this normal
form game all agents with subscript i have strategy space S0i = Si.
Let Θ−i = ×j=N\iΘj denote the set of possible type profiles for the
agents N\i in the original Bayesian game. Given a strategy profile
s+ = (s11, ...., s

j
i , .....s

kn
n ) ∈ ×n

i=1S
0
i to the game Γ

0 we can identify this
strategy with one in Γ by letting s+i (θi = θji ) = sji . The utility to
agent θji is then defined by using the notion of expected utility in Γ

vji (s
+) = EUi(s

+
i (θi), s

+
−i(·); θ

j
i ).

The new normal form game Γ0 = hN 0, S0, vi is then well defined, which
leads to the result.

Proposition 6.1. Given the Bayesian game hN,S,Θ, u, pi with
N,S,Θ all finite sets a Bayesian Nash equilibrium in mixed strategies
exists.

Proof. Given the Nash’s Theorem (Theorem 5.4), the finite game
hN 0, S0, vi has a Nash equilibrium in mixed strategies. Let σji denote
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the lottery over Si that such a mixed strategy equilibrium specifies.
Since the profile σ satisfies the condition for a Nash equilibrium, the
strategy σi(θi = θji ) ≡ φi(θi) will satisfy the condition 6.1. ¤

9. Exercises

Exercise 6.1. Consider the jury voting game where p = 3
4
and

π = 2
3
. Characterize the set of BNE to the game. Now assume that

instead of majority rule, a version of unanimity rule is used — if all
agents vote to convict the defendant is convicted, if at least one agent
votes to acquit the defendant is acquitted. Characterize the BNE to
this game (again assuming that p = 3

4
and π = 2

3
).

Exercise 6.2. Consider the Jury Voting Game with a continuum
of types. Prove equation 6.2.

Exercise 6.3. Consider a version of the Palfrey-Rosenthal model
where k contributions are required for the provision of the public good.
However, assume that contributions are refunded if there are fewer than
k. How does this modification effect the value of the cutpoint bc? Now
suppose that contributions in excess of k are returned randomly to the
agents. What happens?



CHAPTER 7

Extensive Form Games

Normal form representations of games are static in that all players
choose their strategies simultaneously. However, many applications in
political science involve players choosing strategies in sequence or in
multiple stages. As we will see, it is possible to model these games in
the normal form. However, it is often more convenient to model these
games in the extensive form.
To motivate the extensive form, consider the following application

from international relations. Assume that there are two countries
A and B who are involved in a dispute over territory. We assume
that B controls the territory in question, thus the first stage of the
game involves A’s decision about whether to initiate conflict by moving
troops into the disputed region. After observing whether A initiates, B
then decides whether to acquiesce and letAmaintain control or escalate
in an attempt to expel A’s army from the territory. If country decides
to escalate, it is successful in repelling A with probability p.
We assume that, apart from the resources of the disputed region,

each country has a national wealth of a0 and b0 and that the territory
is worth an additional 4 units of national wealth to each country. A’s
invasion of the region costs one unit as long as B does not attack.
However, an escalation by B costs each country 6 units. The following
table gives the payoffs from each of the possible outcomes.

Table 7.1: Escalation Game
If A does not initiate and B acquiesces, (a0, b0 + 4)
If A does not initiate and B escalates, (a0 − 6, b0 − 2)
If A initiates and B acquiesces, (a0 + 3, b0)
If A initiates and B escalates (a0 − 6 + 4p, b0 − 6 + 4p)

Suppose we were to model this game as a normal form where A
chooses whether or not to initiate and B decides whether to acquiesce
or escalate. Then we would be ignoring the fact that B knows A’s
choice when it makes its decision.
A better way of representing this game is using a game tree as

in Figure 7.1. A game tree consists of nodes representing all of the

135
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decisions made to date. Alternatively, we say that the nodes represent
the histories There is an initial node at the beginning of the game
(representing that nothing has happened). At each node there are
branches representing the actions available to the player who chooses
at that node. Each of these branches lead to the nodes of the next
stage. The end of the game is represented by terminal nodes which
specify the payoffs for each play of the game.

Insert Figure 7.1 Here
At the initial node of our war game, A makes its decision at the ini-

tial node from which there are two branches corresponding to initiate
and not initiate. At each of the subsequent nodes, B makes its choice
between acquiesce or escalate. At each of the four terminal nodes,
the corresponding payoffs are denoted.
Just as a matrix is used to represent normal form games, the game

tree is a representation of the extensive form. The elements of the
extensive game are:

(1) The set of agents N
(2) A set of histories of the game H. The elements of H corre-

spond to nodes of the game tree. HT is the set of terminal
histories. By convention, the initial node is represented as
H0 = {φ}.

(3) A mapping p(h) : H\HT → N assigns to each non-terminal
history h an agent who must make a decision at h.

(4) A set of actions A(h) that p(h) may take following history h.
These may involve randomizations over actions.

(5) Information sets I ⊆ H\HT which form a partition of the
set of histories. If h ∈ I, p(h) is uncertain whether she is
at node h or some other node h0 ∈ I. In the game above,
each player knows the history when it is called upon to play so
that each information set contains a single element. We call
such situations games of complete and perfect information (or
simply perfect information). This assumption will be relaxed
in later sections so that players may not observe all actions
preceding their moves so that some information set I contains
multiple elements. These are games of complete but imperfect
information (or simply imperfect information).

(6) Payoffs U , a list of Bernoulli utility functions ui(h) : HT → R1
for each i ∈ N.

Thus, a finite extensive from game ΓE is the collection hN,H, p(·), Ui .
In the extensive form, a strategy is a complete plan of action. There-
fore, it specifies a feasible action for the player in every history that
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the player might be called upon to act. A formal definition of strategy
follows.

Definition 7.1. Given an extensive form game ΓE, a strategy
profile for player i ∈ N is a mapping si(h) : Hi → A(h). A strategy
profile is a mapping s(h) : H\HT → A(h).

Given this definition, we can specify the strategy sets for both play-
ers. Since A only moves at the initial node, it strategy sets is simply
{initiate, don’t initiate}. However, B strategies must be conditioned
on each history. Thus, B must choose from the following strategies:
halways acquiescei , halways escalatei , hescalate if initiate, acquiesce otherwisei ,
hacquiesce if initiate, escalate otherwisei.
Now that we have specified the strategies, it is easy to see that we

can also represent this game as a normal form.

Table 7.2: Escalation Game in Normal Form
B\A Initiate Don’t Initiate

halways acquiescei a0 + 3, b0 a0, b0 + 4
halways escalatei a0 − 7 + 4p, b0 − 6 + 4p a0 − 6, b0 − 2

hescalate if initiate, acquiesce otherwisei a0 − 7 + 4p, b0 − 6 + 4p a0, b0 + 4
hacquiesce if initiate, escalate otherwisei a0 + 3, b0 a0 − 6, b0 − 2

With this representation, it is easy to see that there are three Nash
Equilibria. The first two are the strategy profiles:

(Initiate, halways acquiescei)
and

(Initiate, hacquiesce if initiate, escalate otherwisei)
Each of these predict that A will invade the disputed region and B will
not respond. The third Nash equilibrium is the profile

(Don’t Initiate, hescalate if initiate, acquiesce otherwisei)
Of course, the third equilibrium predicts that A will be deterred from
entering the disputed region by the threat that B will escalate.
This example shows some of the limitations of the Nash equilib-

rium concept in dynamic games. In particular, the predictions in the
second and third equilibria are somewhat implausible. First, con-
sider the second equilibrium. Suppose that Country A defected from
its equilibrium strategy and decided not to initiate. The equilibrium
then calls for B to escalate the conflict even though A did not initiate.
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Clearly, B is worse off by carrying out its strategy. Thus, Nash equi-
libria allows for behavior that is not rational at histories that are “off
the equilibrium path.” One might discount the problem in the second
equilibrium since it predicts the same behavior as equilibrium 1 which
does not suffer from the problem — B is happy to acquiesce if A does
not initiate. However, consider how the problem emerges in the third
equilibrium. Again suppose that A defected by choosing to initiate.
If this happens B is clearly better off acquiescing for any value of p.
Thus, B’s threat to escalate is not credible. It would never rationally
carry it out if it were called on to do so. Thus, the “peaceful” outcome
is built on behavior which is not sequentially rational i.e. rational at
every possible information set.
In the next couple of sections, we discuss refinements of Nash equi-

libria appropriate for dynamic games which eliminate strategies which
are not sequentially rational. Next we discuss the concept of back-
ward induction which eliminates non-credible threats and sequentially
irrational behavior in games of perfect information. Then we will in-
troduce games of imperfect information and the refinement of subgame
perfection.

1. Backward Induction

The most common way of solving dynamic games of perfect infor-
mation is through backward induction. In backward induction, we
assume that the last player to act chooses the action at each node
that maximizes her utility. The second to last player then chooses
his actions optimally knowing that the last player will choose optimal
actions at each node. This process is continued until each player has
chosen optimally under the assumption that all future players will make
optimal choices at each history.
It is easy to apply backward induction to our conflict game. First,

we require that B make optimal choices at each node. At the initiate
node, B clearly gets a higher utility from acquiescing The same is true
at the don’t initiate node so that A knows that B will always acquiesce.
Given this knowledge, A optimally chooses to initiate. Thus, the
solution from backward induction is (Initiate, halways acquiescei) — the
Nash equilibrium that did not involve sequentially irrational behavior.
Let’s consider some other examples before formalizing the proce-

dure.

1.1. Application: The Centipede Game. Figure 7.2 presents
a game tree that has been studied extensively in experimental econom-
ics, known as the Centipede game. Two players take turns choosing
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between Down and Left. The choice of D ends the game, but L con-
tinues it until stage 5. One of the reasons that this game is of such
interest to experimentalists is that a naive player 1 may attempt to
continue to play L in order to get the large payoff of 10 at stage 5.
However, we will see such a strategy is not sequentially rational and
does not survive backwards induction. We begin at stage 5 where
player 1 will clearly play L. Backing up to stage 4, player 2 knows
that player 1 will play left in the last stage which would give her a pay-
off of −10 so she does better playing D. Backing up one more stage,
player knows that L generates −4 while D guarantees 3. Thus, he
chooses D. Clearly, if we continue this process back to the first stage,
we see that in fact player 1 will rationally choose D. Indeed, the only
strategy profile that survives backward induction is {D,D,D,D,L}.

Insert Figure 7.2

1.2. Application: Sequential Bargaining. The application of
bargaining models has become increasingly important in political game
theory. Indeed, we dedicate an entire chapter to it later in the book.
Here we consider one of the simplest versions. Assume that there are
two players, 1 and 2, who are bargaining over how to allocate $1. In
the first period, player 1 proposes a division of the dollar where she
keeps x1 and gives x2 = 1 − x1 to player 2. If player 2 accepts, the
dollar is divided accordingly and the game ends. However, if player 2
rejects, the value of the dollar decreases to δ where 1 > δ > 0. This
is intended to capture the fact that the players are impatient in that
they prefer to settle sooner than later. In round 2, player 2 may make
an offer such that she keeps x2 and gives x1 = δ − x2 to player 1. If
player 1 accepts, remaining δ is divided. However, if she rejects, the
dollar disappears and both players get 0. For simplicity, we assume
that the payoffs to each player are ui(xi) = xi.
It turns out that there are lots of Nash equilibria to this game. In

fact any allocation can be supported with Nash equilibrium strategies.
To see this consider, the following strategy combination:
Player 1: Propose x2 = z. If it is rejected, reject any offer in round

2.
Player 2: Accept in round 1 if x2 ≥ z, reject otherwise and then

propose x2 = δ in round 2.
Clearly, the best response of player 1 is to propose x2 = z in round

1 for any z ≤ 1. Otherwise, player 1 would receive 0. Similarly,
player 2’s best response is to accept z. However, these strategies are
clearly not sequentially rational. Player 1 does not profit by rejecting
all second period proposals. He should accept any proposal that gives
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at least as high a utility as the 0 received from rejecting. Thus, player
2 will get to keep all δ in round 2. Thus, she will accept in round 1
if and only x2 ≥ δ. Knowing this, player 1’s best proposal in round 1
is x1 = 1− δ and x2 = δ. This outcome is the only Nash equilibrium
that survives backward induction.

1.3. Solving Games via Backward. Having seen a few exam-
ples, we can to generalize the notion of backward induction. Let HT−1

be the set of histories of play that can be reached at stage T − 1. At
each of these histories h ∈ HT−1, backward induction the player who
acts, p(h), to choose its action optimally to maximize her utility. Thus,
for each h ∈ HT−1, p(h) selects a∗(h) = argmaxa∈A(h) up(h)((h, a)).
Next consider the set of histories that immediately proceedHT−1and

only lead to histories in HT−1(we denote this set by HT−2). For each
h ∈ HT−2, p(h) select the action a ∈ A(h) which is optimal for p(h)
given the choices made fromHT−1 or a∗(h) = argmaxa∈A(h) up(h)((h, a, a∗(h, a))).
This process can be iterated to stage k where we solve for a∗(h) =
argmaxa∈A(h) up(h)((h, a, a

∗(h, a))) for each h ∈ HT−k. This process
continues to the initial node H0 = {∅}.

2. Dynamic Games of Complete but Imperfect Information

So far we have only considered models in which at every stage, the
player who moves knows all of the previous moves and so knows exactly
which game node she is at. Using the terminology of the last section,
all information sets contain a single element. Now we consider models
in which information sets contain multiple histories. Games of this
form are said to have imperfect information. This can occur either
because not all moves are observed or because some moves are taken
simultaneously.
Let’s first look at a simple game where some actions may not be

observable. Consider a game between a bureaucrat B and a politician
P. The bureaucrat has to choose a regulatory enforcement level from
{H,L} which represent high and low respectively. High enforcement
is costs c > 0 to B but low enforcement is assumed to be costless.
To keep things simple, we will assume that B gets no utility from its
enforcement. Therefore, it gets −c for H and 0 for L. However,
assume that P prefers H to L and that uP (H) = 1 and uP (L) = 0. P
cannot observe B’s enforcement level unless it conducts oversight of B
at a cost 1 > k > 0. If B is found to have chosen the lax enforcement,
it suffers a penalty f which we assume is greater than c and is forced
to choose H.
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The main difference between this game and ones we have seen before
is that P does not know whether the history is H or L at the point at
which she has to decide whether to conduct oversight. Consequently,
I(H) = {H,L} and I(L) = {H,L} . In extensive form given in Figure
7.3, we denote thatH and L are in the same information set by connect
the nodes with dotted lines.

Insert Figure 7.3 Here
Since P does not observe B’s action, she must play the same action

at each node. Since a strategy by B is simply a choice at the first
node, we can write this game in the normal form.

Table 7.3: Oversight Game
B\P Oversight No Oversight
H −c, 1− k −c, 1
L −f, 1− k 0, 0

Given the assumption that f > c, there are no pure strategy Nash
equilibria in this game. If B choosesH, P ’s best response is to not con-
duct oversight, but the best response to no oversight is low enforcement
in which case P would prefer oversight. The mixed strategy equilib-
rium of this game involves B choosing the high enforcement level with
probability 1− k and P conducting oversight with probability c

f
.

Now we turn to a familiar example to illustrate how the extensive
form can accommodate simultaneous actions. The trick is to treat
simultaneous moves as sequential ones in which subsequent players do
not observe the action taken. Consider the prisoner’s dilemma where
two crooks have to decide whether or not to confess. We can model
this is extensive form by letting player one move first and then placing
both confess and don’t confess in the same information set for player
2 as we have done in Figure 7.4.

Insert Figure 7.4 Here
Finally to show how flexible the extensive form can be, consider the

abstract game with three stages in Figure 7.5. Each player has three
moves Left, M iddle, Right. When player 1 plays left it is observed,
but when player 2 plays right it is observed. Player 2 therefore has two
information sets {L} , {M,R}. Player 3 has four {LL,LM} , {LR} ,
{ML,MM,RL,RM} , and {MR,RR} .

Insert Figure 7.5 Here
The technical and conceptual difficulty with games of imperfect

information is that we no longer can apply backward induction since
players do not know which node they are on. We need a more general
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notion of sequential rationality. Rather than assume that each player
takes the best action given the node they are on, we assume that at
each stage that can be conceptualized as a distinct game all the players
play Nash equilibrium strategies. This concept is based on the idea of
the subgame. A subgame is a subset of an extensive form that satisfies
the following criteria:

(1) It begins at a node that is a singleton information set.
(2) It includes all nodes following this initial node, but only nodes

that follow the initial node.
(3) It does not cut any information sets. If a histories h and h0

are in the same information set, there are part of the same
subgame.

The example in Figure 7.5 has three subgames: the original game,
a subgame following L, and a subgame game following the history LR.
A formal definition of the set of subgames follows.

Definition 7.2. Given an extensive form game ΓE, the set of sub-
games are all of the extensive form games constructed by selecting all
h ∈ H\HT which are singleton information sets and restricting H, p(·)
and ui(·) to histories that can be reached from h.

Given the definition of subgames, the new requirement of sequential
rational is that all agents play Nash equilibria in all subgames. Thus
requirement is known as subgame perfect Nash equilibrium or SPNE.

Definition 7.3. Given an extensive form game ΓE, a strategy pro-
file s(·) is a subgame perfect Nash equilibrium (SPNE) if in every sub-
game to ΓE the restriction of the strategy profile s(·) to the subgame is
a NE of the subgame.

An important result establishes the existence of SPNE for finite
games.

Theorem 7.1. Every finite extensive form game has a SPNE. More-
over, if no player is indifferent between any two terminal histories then
the SPNE is unique.

As an example we will consider a problem of sequential voting by 3
players N = {1, 2, 3}. Suppose that the choices x, y, z are to be voted
on with the agenda: choose between x and y first, and then compare
the winner with z, enacting either the winner from the first vote or z
depending on which proposal gets the most votes. We assume that at
each stage of voting ballots are cast simultaneously. Figure 7.6 depicts
the game tree
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Insert Figure 7.6 Here
We assume that the player have the following preferences over the

enacted policy xP1yP1z; yP2zP2x; zP3xP3y. Applying subgame perfec-
tion and requiring that strategies are not weakly dominated (so voting
is sincere) we see that if the final vote is between x and z then players
2 and 3 will vote for z. In contrast if the final vote is between y and
z then players 1 and 2 will vote for y Accordingly, in voting over x
and y in the first period, strategic agents will anticipate that the real
choice is between the sophisticated equivalents, z and y. Accord-
ingly players 1 and 2 will vote for y over x. Note that player 1 prefers
x to y, but in a SPNE she casts a strategic vote for y over x because
she realizes that a vote for x is really a vote for z which she finds very
unappealing.
It is important to note that if we drop the requirement that voters

do not use weakly dominated strategies, the set of SPNE can be quite
large. Recall that any unanimous vote is a Nash equilibrium in any of
the subgames at the second stage of the agenda. Thus, a large number
of SPNE can be constructed by specifying different Nash equilibrium
strategies for each second stage subgame.
As a second example, consider a model similar to one used byWein-

gast (1997) to explain the development of the rule of law. This game
consists of a ruler R who can choose whether or not to expropriate
wealth x from one of two social groups A or B. After observing which
group the ruler attempts to expropriate, A andB decide simultaneously
whether or not to challenge him. Each incurs cost c from challenging.
If both challenge, the attempted expropriation fails and each receives
a benefit b. A successful challenge also costs the ruler k. If one or
zero groups challenge, the expropriation succeeds. The extensive form
is shown in Figure 7.7.

Insert Figure 7.7 Here
We begin our analysis by computing the Nash equilibria of the

subgame following the decision to expropriate from A. The normal
form for this subgame can be represented as:

Figure 7.4: Expropriation Subgame
B\A Challenge Don’t Challenge
Challenge b, b −x,−c
Don’t Challenge −x− c, 0 −x, 0

Clearly, there are two pure strategy Nash equilibria to this sub-
game corresponding to both groups challenging and to both groups
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not challenging. There is also a mixed strategy equilibrium but we
will ignore it to keep the example simple. Since the subgame follow-
ing an attempted expropriation of B is symmetric, there are also two
pure strategy equilibria corresponding to both challenging and neither
challenging.
Now we can back up to the first stage of the game where R antici-

pates that the Nash equilibrium that is played in each of the subgames
of the second stage. Suppose he anticipates that both groups will chal-
lenge in both subgames, then R’s best response is not to expropriate.
Suppose that the groups challenge in only one of the subgames but not
the other. Then R will expropriate appropriate group. If there is no
challenge in either subgame, the ruler might expropriate either. Thus,
there are five SPNE in pure strategies. Weingast argues that the key
to establishing the rule of law is that A and B coordinate on the Nash
equilibrium where they both challenge attempted expropriations by the
ruler.
It is important to note that solution via backward induction is just

a special case of SPNE. Since in a game of perfect information, all
information sets are singletons, each node begins a new subgame of the
extensive form. Clearly, optimization at every node constitutes a Nash
equilibrium of all subgames. Therefore, any solution using backward
induction is a SPNE.

3. Subgame Perfection and Perfect Equilibria

One of the justifications of SPNE as a solution concept is its close
relationship to Selten’s perfect equilibrium concept. To see the close
link, consider the normal form representation of our crisis game and
the Nash equilibrium profile

(Don’t Initiate, hescalate if initiate, acquiesce otherwisei) .

Suppose that we computed a completely mixed equilibrium where each
strategy had to be played with at least probability ε. In particu-
lar, assume that country A initiates with probability ε. Then coun-
try B’s expected utility from hescalate if initiate, acquiesce otherwisei
is (1− ε) (b0 + 4) + ε (b0 − 6 + 4p) while its utility from always ac-
quiescing is (1− ε) (b0 + 4) + εb0. Since the expected utility from
halways acquiescei is larger for any ε > 0, B will want to play it
with the maximum probability in the mixed equilibrium. As a result
hescalate if initiate, acquiesce otherwisei cannot be the limit of com-
pletely mixed Nash equilibria. Thus, it not only fails the requirements
of SPNE, but it is not a perfect equilibrium either.
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However, while all SPNE are perfect, there are perfect equilibria
that are not subgame perfect. This problem arises because extensive
form games represented in the normal form often generate correlation
in the trembles when the same player moves more than once in the
extensive form.

4. Applications

4.1. Agenda Control.
4.1.1. The Romer-Rosenthal Model. Suppose, as is the case in many

localities in the U.S., that local school budgets have to be approved by
the voters. Further suppose that only the school board can place
the measure on a referendum ballot. Thus, formally, the board has
monopoly agenda control over proposals for school spending s ∈ [0,∞).
We assume that the school board would like to maximize the amount
of spending so that uB (s) is always increasing in s.
Once the referendum has been placed on the ballot, voters decide

via majority rule whether or not to approval it. We assume that all
voters will turnout so that their only possible strategies are {Y,N}. If
a majority chooses Y , then s becomes the new level of spending. If
a majority chooses N , then some reversion (or status quo) spending
level q is adopted. We assume that voters have single peaked and
symmetric preferences over school spending ui (s). Let vi be the ideal
point of voter i. As we showed in chapter 2, such preferences take the
form ui (s) = h (− |s− vi|) .
We propose to solve this game using subgame perfect equilibrium.

However, note that since the last stage of the game is a majority rule
voting game, there are always Nash equilibria where the proposal is
accepted and equilibria where it is rejected for any s. Thus, we will
assume that voters do not use weakly dominated strategies in the voting
subgame. Thus, given any proposal s, each voter will vote Y if ui(s) ≥
ui(q). Note that single-peakedness implies that if voter i prefers q to
s, all voters with ideal points to the left of i do so as well. Further, if
voter i prefers s to q, all voters to the right of i do so as well. Thus,
if the median voter votes Y then the proposal will pass.
Given the equilibrium of the voting subgame, the school board’s

best response is to choose the largest s that is acceptable to the median
voter. Let vm be the ideal point of the median voter. Given vm
and q, we can compute which policies that the median prefers to q or
um(s) ≥ um(q). Note that since h is a non-decreasing function, this
inequality requires that

− |s− vm| ≥ − |q − vm|
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Therefore, if q < vm, this inequality holds for s ∈ [q, 2vm − q]. Con-
versely, if q > vm, a successful proposal requires s ∈ [2vm − q, q] . Thus,
the highest obtainable policy the school board can get is the maximum
of 2vm− q and q. Since the board wants to maximize s, it will choose
max{q, 2vm − q}. Figure 7.8 plots the equilibrium value of s∗ as func-
tions of vm and q.

Insert Figure 7.8 Here

This simple model produces some clear predictions about the re-
lationship between voter preferences, statutory reversions, and policy
outcomes. First, note that the board can use its agenda control to
generate higher spending outcomes when the statutory reversion is low
so long as the median prefers to spend more than the reversion amount.
This is because the voter’s threat to reject large spending proposals is
not credible when the reversion is bad. A second important implica-
tion is that while spending outcomes are responsive to changes in voter
preferences (at least when q < vm), spending grows twice as fast as the
median voter’s preferred spending level.
4.1.2. The Presidential Veto. In the United States and many other

presidential systems, the executive has a veto power over legislative
enactments. We can use a version of the Romer-Rosenthal model to
explore how the veto enhances the executive’s influence over legislation.
To keep things as simple as possible, we will model the legislature

as a single actor L who has single-peaked symmetric preferences on a
single dimension with an ideal point of l. Thus, we denote the legisla-
ture’s preferences as ul (x) = h (− |x− l|) for policy outcomes x ∈ R.
Extending the model to the case where the legislature is a collectivity
is straightforward. Similarly, we assume that the president’s has an
ideal point p and preferences given by up (x) = h (− |x− p|) .
The game form is very simple. In the first stage, L proposes a

bill b to change the status quo policy q. Subsequently, the president
P decides whether to accept b or to veto it the bill which results in
maintaining the status quo q. Thus, we ignore the legislature’s ability
to override vetoes, an issue we take up in the next section.
We can solve this game very easily using backward induction. Clearly,

in the last stage, the president’s best response is to accept any bill for
which up (b) ≥ up (q) or − |b− p| ≥ − |q − p| . Thus, if p > q, she will
accept any b ∈ [q, 2p − q]. Alternatively, if p < q, she will accept
b ∈ [2p− q, q]. Let P (q) denote the set of bills that the president will
accept over the status quo. Now we back up to the legislature’s deci-
sion node. Since the legislature knows which policies will be accepted,
it will choose its most preferred policy from P (q). If l ∈ P (q), then
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clearly b∗ = l. If c is below min P (q), then b∗ =min P (q). If l > max
P (q) , then b∗ =max P (q).
Suppose that l > p. Then, given our derivations of P (q), the equi-

librium policy outcome is

b∗ =

⎧⎪⎪⎨⎪⎪⎩
2p− q if p > q and l > 2p− q
l if p > q and l < 2p− q
l if l < q
q if l > q > p

If p > l, the equilibrium outcomes are

b∗ =

⎧⎪⎪⎨⎪⎪⎩
2p− q if p < q and l < 2p− q
l if p < q and l > 2p− q
l if l > q
q if l > q > p

.

Figure 7.9 plots the equilibrium outcomes as a function of l, p, and
q. The comparative statics results are quite similar to the original
Romer-Rosenthal model. In particular, the legislature does better off
when the status quo is far from the president’s ideal point. Another
important implication is that the influence conferred by the veto is not
very large. In all of the cases that the veto has some impact i.e. b∗ 6= l,
the president is indifferent between the equilibrium proposal and the
status quo. Finally, since the model is one of perfect information,
the legislator perfectly predicts the president’s behavior and no vetoes
occur in equilibrium. In later chapters, we consider models in which
vetoes may occur as part of equilibrium strategies.

Insert Figure 7.9 Here
4.1.3. The Veto Override. Now we consider a simple extension to

the model of the previous section. Instead of assuming that q is the
outcome following any veto, we consider a model where the legislature
can override the veto with a supermajority. Assume that the legisla-
ture has n members and that k > n+1

2
votes are need to override the

executive veto. Further, assume that each legislator has single peaked
preferences of the form ui (x) = h (− |x− li|) and that the ideal points
li are ordered such that li > lj if and only in i > j. Motivated by a
model in which legislative proposals are made according to an open rule
agenda process, we assume that the legislative proposer is the median
with ideal point m ≡ l(n+1)/2.
Given these assumptions (most importantly single-peakedness), a

successful override requires that uk (b) ≥ uk (q) and un−k−1 (b) ≥ un−k−1 (q).
To see that this is true, consider the case where uk (b) ≥ uk (q) and
un−k−1 (b) < un−k−1 (q) . Since preferences are single-peaked, this means
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that there is some i ∈ [n− k − 1, k] such that ui (b) < ui (q) for all leg-
islators with ideal points lower that li. Therefore, the number who
support the override must be strictly less than k. The logic of the
other possibilities is similar. Because their support is necessary and
sufficient, legislators n− k − 1 and k are commonly referred to as the
override pivots.
Since an override is only necessary in case of a presidential veto, only

one of the override pivots is strategically relevant. To see this consider
a hypothetical vetoed bill where up(b) < up(q) and um(b) > um(q). If
p < m, single peakedness and the fact lk > m imply that uk(b) > uk(q).
Thus, the override depends solely on n−k−1’s preferences. Similarly,
if p > m, single peakedness and ln−k−1 < m imply that un−k−1(b) >
un−k−1(q). The implication is that only the preferences of the pivot
that lies on the same side of the median as the president matter for a
successful override.
Thus far we have established that it is necessary for the proposer

to attract the support of either the president or the override pivot
on his side median. Now we consider how the proposer chooses her
optimal proposal. First suppose that ln−k−1 < p < m. Again using
singlepeakedness, we know that any bill that ln−k−1 and m prefer to
q, p also prefers. Thus, the proposer does not require the support of
ln−k−1. A similar argument establishes that when p < ln−k−1 < m, the
proposer need only attract n − k − 1’s support. The corresponding
cases where p > m are symmetric so that we know that the proposer
need only attract the closer of the president and the override pivot on
the president’s side of the median.
Thus, we can define the pivotal actor and her ideal point as v =

max (ln−k−1, p) if p < m and v = max (lk, p) otherwise. Furthermore,
the game can be treated as a direct application of the Romer-Rosenthal
model where the ideal point of the veto player is v. Thus, the SPNE
proposal is given by:

b∗ =

⎧⎪⎪⎨⎪⎪⎩
2v − q if v > q and m > 2v − q
m if v > q and m < 2v − q
m if m < q
q if m > q > v

if v > m, and

b∗ =

⎧⎪⎪⎨⎪⎪⎩
2p− q if p < q and m < 2p− q
m if p < q and m > 2p− q
m if m > q
q if m > q > p
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otherwise. Figure 7.10 illustrates the equilibrium outcomes for differ-
ent values of k. Not surprisingly, when the number of votes need to
override goes down, the effect of the veto power is diminished.

Insert Figure 7.10 Here
4.1.4. Structure Induced Equilibrium. Recall from chapter 2 that

the core of multi-dimensional majority rule voting models is typically
empty. Primarily to explain how legislatures overcame this “chaos”
problem, Shepsle (1979) developed the idea of “structure-induced equi-
librium.” The basic idea is that legislative institutions such as commit-
tee systems restrict the types of legislative proposals and amendments
that may be considered, and that such restrictions lead to non-empty
legislative cores.
While Shepsle’s initial work is developed within the paradigm of

social choice, we present his various models as extensive form games
which we solve for subgame perfect Nash equilibria.
To keep things simple, we focus on a legislature with n members

and two committees with ideal points C1, and C2. The policy space is
assumed to be a subset of R2. Player C1 represents a committee with
jurisdiction over dimension 1 while C2 has jurisdiction over dimension
2. In the absence of legislative activity, we assume that the status quo
q = (q1, q2) remains in force. Each legislator has quadratic policies
(x1, x2) given by

ui
¡
x1, x2

¢
= −

¡
x1 − l1i

¢2 − ¡x2 − l2i
¢2

where (l1i , l
2
i ) is the ideal points of legislator i. We also assume that

each committee has quadratic preferences with ideal points (c11, c
2
1),

and (c12, c
2
2) respectively. An important feature of these preferences is

that they are separable across dimensions. Each players preferences
on dimension 2 are independent of outcomes on dimension 1 and vice
versa.
We know consider several extensive forms representing various leg-

islative institutions.
The Open Rule with Germaneness. The first extensive form we con-

sider is the open rule with a germaneness requirement. In this game,
each committee sequentially reports a bill to change the status quo on
its dimension. Thus, C1 makes a proposal b1 to change q1 and C2
makes a proposal b2 to change q2. Each bill may be amended, but only
on the germane dimension. Thus, amendments to bj can only move it
along dimension j.
Let’s begin in the last stage of the game where c2 proposes b2. Since

amendments to move the bill along dimension 2 can be freely made,
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the median voter theorem suggests that final outcome will be the ideal
point of the median voter on dimension 2. We denote this ideal point
as m2 = median {l2i } . Thus, c2 has a weakly dominant strategy to
propose b2 = m2. Note that this results depends on the fact that
preferences are separable so that the outcome on dimension 1 does
not effect dimension 2 preferences. Clearly, by the same logic, c1 will
propose b1 = m1 = median {l1i } . Finally, note that the separability
of preferences implies that the order in which the committees make
proposals does not matter.
The policy (m1,m2) (or the dimension by dimension median) is the

structure induced equilibrium under the open rule with germaneness.
It is precisely because amendments can only be made on one dimension
at a time that we get this generalization of the median voter result
rather than a majority rule cycle.
Gatekeeping. While in the last section, we assumed that each com-

mittee had to make a proposal, now we assume that committees have
discretion over whether to make a proposal at all. If committee j
“keeps the gates closed” on dimension j, the policy outcome remains
qj. However, if the committee does report a a bill it can be freely
amended subject to germaneness.
First consider committee 2’s decision. If it opens the gates, the

policy on its dimension will be m2. Thus, it exercises gatekeeping if
− (b∗1 − c12)

2 − (q2 − c22)
2
> − (b∗1 − c12)

2 − (m2 − c22)
2. Simple algebra

reveals that the committee will close the gates if and only if c22 >
q2 > m2 or m2 > q2 > c22. When one of these conditions hold,
there are no policy revisions to the status quo on dimension 2 that
the committee and the 2nd dimension median simultaneously prefer.
Thus, the committee reports no bill. Since the case of committee 1 is
symmetric, we obtain gatekeeping when c11 > q1 > m1 or m1 > q1 > c11.
Thus, the policy outcomes (x1∗, x2∗)of the SPNE are

xj∗ =

½
qj if cjj > qj > mj or mj > qj > cjj
mj otherwise

The Closed Rule. Finally, suppose that committees make proposals
under closed rules so that amendments are not allowed. Therefore,
they are Romer-Rosenthal agenda setters within their jurisdictions.
We can directly apply the results of section 4.1.2 where the proposer is
cj and the vetoer ismj. Note that gatekeeping powers are irrelevant in
this game since committee j can do at least as well as the gatekeeping
outcome by proposing qj. In fact, as Groseclose and Krehbiel (2002)
point out, both cj and the jth dimension median are better off under
the closed rule than the open rule with gatekeeping.
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4.2. A Model of Power Transitions. Our next application is
based on the work of Powell (1999) who uses similar model to study
how dramatic shifts of power in the international system might lead
to violent conflict. Suppose that there are two countries A and B.
Country A is making a claim against a region controlled by B. The
total value of the region is normalized to $1 per period. We focus on
a two-period version of this game and assume that each country weigh
the outcome of each period equally.
First consider country B’s options. It can appease A in each period

t by offering it a share of the region’s output 0 ≤ xt ≤ 1 or it can
attempt to settle the dispute militarily by attacking A. If B chooses
to attack and wins the war, A drops its claim and the game ends. If B
loses the war, A takes undisputed control of the region. Country A’s
available choices in period t is either to accept xt or to refuse it and go
to war. Fighting a war costs c to both sides.
An important feature of the environment that Powell studies is that

country A’s military capability is increasing relative to B’s over time.
Assume that in the first period, A wins a war with probability p1 where
as in the second period A wins with probability p2 > p1. To keep things
interesting, we assume that p2 > c.
With respect to the incidence of violent conflict, there are two types

of equilibria that we might observe: one in which B appeases A in both
periods and one in which B attacks A in the first period.
First, suppose that 2c > p2 − 2p1. Our claim is that in this case,

the SPNE equilibrium is one where B gives p2 − c to country A in the
second period and max{0, 2p1 − p2} in the first period. Since this is
a game of perfect information, we can verify that these strategies are
part of a SPNE using backward induction. In the second period, A’s
expected utility of fighting is p2 − c so that B must offer at least as
much to avoid a conflict, leaving it with a payoff of 1−p2+c. Since B’s
expected utility of fighting is 1 − p2 − c, it strictly prefers appeasing.
Now consider period 1. A receives $1 in each period if it wins a war
and 0 if it loses. Therefore, the expected utility of fighting is 2p1 − c.
Therefore, to appease A, B must choose x1 so that x1+p2−c ≥ 2p1−c
or x1 ≥ 2p1 − p2. Since B will rationally offer the minimum amount
x∗1 = max{0, 2p1 − p2}. Now we need only check to see that B would
prefer to pay x∗1+x

∗
2. Since B’s expected utility of war is 2 (1− p1)−c,

it prefers the payment if and only if 2c ≥ p2 − 2p1 + x∗1 which always
holds when 2c > p2 − 2p1.
Now suppose that this condition does not hold so that p2−2p1 > 2c.

Since c > 0, this requires that x∗1 = 0. Thus, B would prefer to fight
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than to make the payments since p2 − 2p1 + x∗1 > 2c. Thus, when the
condition fails, the SPNE has B attacking A in the first round.
To generate intuition, note that the necessary condition for a peace-

ful resolution only fails when p2 is much greater than p1 so that A is
much weaker in the first stage than it will be in the second stage. Thus,
B prefers to attack when A is weak to avoid making large concession
when A becomes more powerful. If the distribution of power were
stable, their would be no war in equilibrium.

4.3. A Model of Transitions to Democracy. Acemoglu and
Robinson (forthcoming) develop a number of models designed to ex-
plore the conditions under which authoritarian polities will adopt de-
mocratic institutions. In this section, we provide a simple sketch of
their framework and one of their models.
Suppose that there are two types of agents: rich and poor. Let

λ > 1
2
be the proportion of citizens who are poor while 1 − λ is the

proportion of rich citizens. Since these agent differ in their incomes,
they have different preferences over tax rates. Rich citizens each receive
income yr and poor citizens have income yp. The average income in
the society is λyp + (1 − λ)yr. Clearly, yr > y > yp. An important
parameter in Acemoglu and Robinson’s analysis is θ which represents
the share of income held by the poor so that

yp =
θy

λ
and yr =

(1− θ) y

1− λ
.

Thus, an increase in θ represents a decrease in inequality.
The primary policy instrument in this political economy is a linear

tax and transfer scheme where the government sets a proportional tax
rate τ and then transfers the tax revenue back to the citizens in each
lump sum. Given a tax rate τ , the per capita tax levy is τy. How-
ever, as a simple way of capturing the distortionary effects of income
taxation, Acemoglu and Robinson assume that revenues are lower than
the levy by a function C(τ)y. To keep things simple and get a closed
form solution, we assume that C(τ) = 1

2
τ 2. Thus, the distortion is an

increasing convex function of the tax rate. After deducting this dead-
weight loss, the amount of money available for transfers is given by
T = (τ − C(τ))y and the after-tax and transfer income of each agent
is

V i(τ) = (1− τ) yi +

µ
τ − 1

2
τ 2
¶
y



4. APPLICATIONS 153

Now we consider the preferred tax rates by rich and poor voters. The
first order condition for the optimal tax rate choice by poor voters is

y − yp − τy = 0

Using the fact that θy
λ
, we can write the poor’s most preferred tax rate

as

τ p =
λ− θ

λ
Since the poor have lower incomes than the rich, their income share
is lower than their share in the population so that λ > θ. Thus,
0 < τ p < 1. Also note that τ p is decreasing in θ so that the poor’s
preferred tax rate is increasing in inequality.
Now consider the preferences of the rich. Their first order condition

is
y − yr − τy = 0

This produces an infeasible negative tax rate. Thus, the rich’s most
preferred feasible tax rate is τ r = 0.
In Acemoglu and Robinson’s model, there is a political shock in

each period which determines the consequences of overthrowing the
regime and replacing it by a dictatorship of the left. They assume that
when the shock is S, 1−µS of the economy’s income is destroyed where
S = H, L and µH > µL. Thus, in stateH the costs of overthrowing the
regime are low compared to state L. During a revolution the income
of the rich is confiscated and evenly divided among the poor, thus is
state S the payoff to the poor is given by

V p
¡
R,µS

¢
=

µSy

λ

For simplicity, they assume that following the revolution the rich get
no income so that V r

¡
R,µS

¢
= 0.

To parameterize the outcomes of Acemoglu and Robinson’s model,
we need to consider the extent to which revolution is a threat. We say
that the revolution constraint binds in state S if the poor prefer revo-
lution to an authoritarian outcome at the rich’s ideal tax rate of zero
or that V p

¡
R,µS

¢
> V p (0). From substituting the above expressions,

we find that this constraint binds when µS > θ.
Given this specification of the economy and the costs of revolution,

we turn to one of Acemoglu and Robinson’s extensive form games,
illustrated in Figure 7.11. To simplify the figure, we show only the
extensive form following the realization of the state S.

Insert Figure 7.11 Here
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First, the state, H or L, is revealed. Then the rich move first and
decide whether to move to a democracy D or to maintain control in an
authoritarian system N . If the rich choose N , they also choose a tax
rate bτ .
After the rich make their decisions, the poor move next and decide

whether to initiate a revolution R or to accept the rich’s decision (NR).

If they revolt, the payoffs are V p
¡
R,µS

¢
= µSy

λ
and V r

¡
R, µS

¢
= 0.

If they do not revolt against D, the tax rate is chosen by majority
rule. Since the median voter is poor, the equilibrium tax rate is τ p

and the payoffs to D are therefore V r (τ p) and V r (τ p) for the rich
and poor respectively. By comparing the payoffs of R and D, it is
easy to establish that in state S the poor will prefer to revolt rather
than accept democracy if and only if µS > θ + τ p (λ− θ) − 1

2
τ p2λ or

µS > θ + (λ−θ)2
2λ

.
Now suppose the rich chose N and the poor prefer not to revolt.

Acemoglu and Robinson assume that the rich may not be able to com-
mit to maintaining bτ > 0 after the revolutionary threat has passed. To
model this commitment problem, they assume that with probability p
rich maintain the tax rate bτ but with probability 1− p they have the
opportunity to renege and choose τ r = 0. Given the rich’s initial choice
of tax rate and the possibility of reneging, we can compute that the
utilities from N are

V p (N,bτ) = (1− p) yp + p

∙
(1− τ) yp +

µ
τ − 1

2
τ 2
¶
y

¸
= yp + p

∙
τ (y − yp)− 1

2
τ 2y

¸
and

V r (N,bτ) = (1− p) yr + p

∙
(1− τ) yr +

µ
τ − 1

2
τ 2
¶
y

¸
= yr + p

∙
τ (y − yr)− 1

2
τ 2y

¸
if the poor do not revolt. Given these payoffs, it is easy to see that
the poor will prefer to revolt against N if

µS > θ + p

∙bτ (λ− θ)− 1
2
bτ 2λ¸

In order to reduce the number of cases, we follow Acemoglu and Robin-
son and assume µL < θ so that the poor never revolt in state L. This
leaves us with three cases:



4. APPLICATIONS 155

(1) Suppose that µH < θ. Then the revolution constraint binds
in neither case. Thus, the unique SPNE consists of N , a tax
rate of zero, and no revolution.

(2) Suppose that µH > θ+ (λ−θ)2
2λ

. Then even democracy does not
deter the poor from revolting, so a revolution occurs.

(3) Suppose that θ + (λ−θ)2
2λ

> µH > θ. In this case, it may be
possible to the rich to avoid a revolution by accommodating
the poor with a tax rate bτ . From above we know that doing
so requires that the Rich set the tax rate so that

p <
µH − θbτ (λ− θ)− 1

2
bτ 2λ

However, if p < µH−θ
τp(λ−θ)− 1

2
τp2λ

=
2λ(µH−θ)
(λ−θ)2 the rich will prefer

to choose D than to set the tax rate higher than τ p. Thus,

there is a critical value of p∗ =
2λ(µH−θ)
(λ−θ)2 such that democracy

is the outcome if p∗ > p. Thus, when the rich have difficulty
committing to a high tax rate, they can avoid revolution by
transitioning to democracy.

To generate some predictions about when democratic transitions
are likely to occur, we can look at how p∗ is affected by changes in
the parameters. Not surprisingly, p∗ is increasing in µH suggesting
that when the costs of revolution are low, the rich is more likely to
support democratization. Secondly, p∗ and the likelihood of democracy
are decreasing in θ. This occurs because greater inequality makes a
revolution a more attractive option for the poor. In turn, the rich
have to make more concessions to prevent it. If committing to these
concessions is sufficiently difficult, a democratic transition will occur.

4.4. A Model of Coalition Formation. One of the earliest ap-
plications of political game theory is the study of coalition formation
(Riker 1962). While the earliest models were developed within the co-
operative game theoretic and social choice traditions, there have been
a number of recent applications using non-cooperative bargaining mod-
els.
In this section, we look at one such model of coalition governments

developed by Banks and Austen-Smith (1989). Assume that there are
three parties α, β, and γ where Ω = {α, β, γ}, who have known pol-
icy positions pα, pβ, and pγ on a single dimension policy-space P ⊂ R
where pα > pβ > pγ. Let w = {ωα, ωβ, ωγ} be the vector of votes shares
for party in the last election where we assume that all vote shares are
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less than 1
2
so that the government has to be a coalition. To simplify

matters, we will assume that these vote shares are exogenous parame-
ters, whereas Banks and Austen-Smith derive them endogenously from
a model of voting. We will also be interested in the vote shares for
parties in various coalitions. Let C ⊂ Ω be a coalition then the vote
share of each coalition is given by

ωC =
X
k∈C

ωk

We say that C is a winning coalition if ωC > 1
2
. So let D(w) =©

C ⊂ Ω : ωC > 1
2

ª
be the set of winning coalitions andDk(w) = {C ⊂ D(w) : k ∈ C}

be the set of winning coalitions that include party k.
The three parties will bargain over the formation of a new govern-

ment. In doing so, they will choose a policy y ∈ P and allocate a fixed
set of portfolios G. To keep things simple, we follow Austen-Smith and
Banks and assume that G is infinitely divisible. We assume that the
allocations g = {gα, gβ, gγ} satisfy

P
k∈C gk = G.

We assume that each party has quadratic preferences over policy
and additive linear preferences in portfolios. Therefore, the payoff to
party k to policy y and allocation g is given by

− (y − pk)
2 + gk

The protocol for bargaining is as follows. First, the party with the
largest vote share, say k, is selected as formateur and chooses a coali-
tion from Dk(w). The formatuer then proposes a policy yk and an
allocation g. If its coalition partners accept, yk and gk are imple-
mented and the game ends. However, if one of the coalition partners
vetoes, the second largest party becomes the formatuer, selects a coali-
tion from Dl(w), and proposes yl and gl. If this is defeated, the
smallest party becomes the formatuer. If the smallest party is unsuc-
cessful, a caretaker government takes office and maintains a status quo
policy pq and chooses g = {0, 0, 0} .
We can solve this game via backward induction. The payoffs

to party k from a caretaker government are vck = − (pq − pk)
2 . To

simplify, we will assume that vck < − (pj − pk)
2 for all j and k so

that any party k prefers party j’s ideal point and a zero share of the
portfolios to a caretaker government. Formally, this requires that
pq /∈ [2pγ − pα, 2pα − pγ] .
We first consider the example of vote shares such that ωα > ωβ >

ωγ. So consider the third stage where party γ is the formateur. By as-
sumption, all parties prefer yγ = pγ and gγ = (0, 0, G) to the caretaker
government so this must be party γ’s optimal choice.
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Now consider party β’s choice. The utilities of defeating any pro-
posal by party β and moving to party γ’s proposal stage are vγγ = G

and vγα = − (pγ − pα)
2. Since γ receives the highest possible utility

from voting against β’s offer, β must make an offer to party α. How-
ever, note that α prefers yβ = pβ and gβ = (0, G, 0) to a government
formed by γ, so α will accept β’s ideal point and no portfolios.
Now we back up to the first stage of the game where α makes a

proposal. The utilities from defeating party α’s proposal and moving
to party 6 β’s stage are now vββ = G and vβγ = − (pβ − pγ)

2. Clearly,
α has nothing to offer β and will thus try to form a coalition with
γ. Thus, α will choose yα and gγ to maximize − (yα − pα)

2 +G− gγ
subject to − (yα − pγ)

2+ gγ ≥ − (pβ − pγ)
2and G ≥ gγ ≥ 0. There are

three cases depending on whether there are corner solutions g∗γ = G or
g∗γ = 0.

(1) If pα − pβ ≥ pβ − pγ and G ≥ 1
4
(pα − pγ)

2 − (pβ − pγ)
2 , y∗α =

pα+pγ
2

and g∗γ =
1
4
(pα − pγ)

2 − (pβ − pγ)
2 .

(2) If pα − pβ ≥ pβ − pγ and G < 1
4
(pα − pγ)

2 − (pβ − pγ)
2 , y∗α =

pγ +
q
G+ (pβ − pγ)

2 and g∗γ = G.

(3) If pα − pβ < pβ − pγ, y∗α = pβ and g∗γ = 0.

In the first two cases, the distance from α’s ideal point and pβ is
greater than the distance from pβ to γ’s ideal point. Thus, α is more
willing to give up portfolios in favor of a policy better than pβ than
party γ requires as compensation. Thus, party α’s offers a compromise
policy. When G is sufficiently large, α offers the compromise policy
y∗α =

pα+pγ
2

which reflects an optimal trade-off in its policy goals and
its desire to hold portfolios. When G is small, however, α is willing to
give up all of the portfolios in order to move policy in the direction of
its ideal point. Finally, in the last case, α is sufficiently well off under
pβ compared to γ that α is unwilling to compensate γ for moving policy
towards its ideal point. An interesting feature of this outcome is that
the coalition is a non-connected one of the extreme parties. This is in
contrast to arguments stressing that policy motivated parties will seek
form coalitions with ideological allies (Axelrod 1970).
Now consider the case where ωβ > ωα > ωγ. Once again γ will

choose y∗γ = pγ and gγ = (0, 0, G) in the last period. Now consider α’s
choice in the second period. Clearly, it has nothing it can offer γ and
will therefore try to build a coalition with β. Thus, α will choose yα
and gβ to maximize− (yα − pα)

2+G−gβ subject to− (yα − pβ)
2+gβ ≥

− (pβ − pγ)
2and G ≥ gβ ≥ 0. The solutions has four distinct cases.
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(1) If pα+pβ
2
≥ 2pβ − pγ and G ≥ 1

4
(pα − pβ)

2 − (pβ − pγ)
2 , y∗α =

pα+pβ
2

and g∗β =
1
4
(pα − pβ)

2 − (pβ − pγ)
2 .

(2) If pα+pβ
2
≥ 2pβ − pγ and G < 1

4
(pα − pβ)

2 − (pβ − pγ)
2 , y∗α =

pβ +
q
G+ (pβ − pγ)

2 and g∗β = G.

(3) If pα > 2pβ − pγ >
pα+pβ
2
, y∗α = 2pβ − pγ and g∗β = 0.

(4) If pα < 2pβ − pγ, y
∗
α = pα and g∗β = 0.

In the last two cases, α finds it optimal to play the Romer-Rosenthal
setter game with β with a reversion of pγ over policy and offer no
portfolios. In cases 1 and 2, party α makes portfolio concessions
to move policy further than the Romer-Rosenthal inflection point of
2pβ − pγ.
Despite the complexity of these cases, the important thing to note

is that all predict y∗α > pβ and g∗γ = 0. Thus, when party β makes
its offer in the first period, it knows that party γ will accept y∗β = pβ
and g∗γ = 0. Thus, the subgame perfect Nash equilibrium outcomes
are y∗ = pβ and g∗ = (0, G, 0). Thus, this case generates a connected
coalition that implements the ideal point of the median party.
We leave proofs for the remaining cases as exercises. However, the

following table summarizes the outcomes for all cases.

Table 7.5: Outcomes of Austen-Smith and Banks’ Model
Case Governing Coalition Policy

ωα > ωβ > ωγ α and γ pα+pγ
2

ωβ > ωα > ωγ β and γ pβ
ωβ > ωγ > ωα β and α pβ
ωα > ωγ > ωβ α and β

pα+pβ
2

ωγ > ωα > ωβ γ and β
pγ+pβ
2

ωγ > ωβ > ωα γ and α pα+pγ
2

A key point of Austen-Smith and Banks model is that composi-
tion of the government and the policies it implements are driven by
the voting weights which determine the sequence of proposals. Since
these weights are determined voting behavior, the key to making pre-
dictions is an understanding of how voters behave in anticipation of
the parliamentary bargaining. We refer the readers to the original for
an analysis of the voting game.

5. Exercises

Exercise 7.1. Diane is collecting money for the Center for the
Study of Democratic Politics coffee fund. She needs to collect $2 from
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at least three faculty members to operate the fund for the month. No
member can contribute more that $2 and Diane cannot exclude non-
contributors from drinking coffee. Each center member has an esti-
mated $10 benefit from coffee service. If less than $6 is contributed,
Diane keeps the money and no coffee is provided. If more than $6 is
contributed, Diane provides the coffee and pockets the difference.

a. Assume that Diane decides to ask the faculty members in the
following order: Arnold, Bartels, Lewis, Prior, and Romer.
Assume that each faculty member can observe who has con-
tributed and who hasn’t.. What are the set of Nash equilibria
to this game? What is the unique Nash equilibrium that
survives backward induction?

b. Now modify the game somewhat so that Lewis, Prior, and
Romer do not know whether or not Arnold and Bartels con-
tributed. Further suppose that Lewis, Prior, and Romer must
decide simultaneously. Draw a game tree for this game in
extensive form. Pay particular attention to the information
sets. What are the sub-game perfect equilibria to this game?
Does Diane do better or worse in this game according to her
personal payoffs?

c. Now let Diane choose the information structure of the game
i.e. she can choose which contribution decisions are revealed
at which stage. Suppose she wants to maximize her payoffs.
Which game should she choose?

Exercise 7.2. Vote Buying (This exercise is based on Groseclose
(1996)). Assume that there are N legislators with policy preferences
ui(x) for x ∈ R. They must vote for bill xB against the status quo x0
where xB > x0. So let αi = ui(xB) − ui(x0) the degree of preference
for xB over x0 for legislator i. We assume that each legislators policy
payoff for voting for the bill is αi whether or not the bill passes. We
also assume that there are two vote buyers L and R with net preference
parameters αL and αR respectively. Vote buyer L wants to defeat xB so
that αL < 0 while R wants to pass it as αR > 0. Consider the following
model. R moves first and offers zRi to each legislator who agrees to
vote for the bill. L moves second and offers zLi to each legislator in
exchange for voting against xB. Thus, the payoff for voting in favor of
xB is αi + zRi while the payoff for voting against is −αi+ zLi .

a. Assume that N = 5 and that αi = −3 + i for i = 1, 5.
Characterize the subgame perfect Nash equilibria to this game
for various levels of αL and αR.

b. Can there be greater than minimum winning coalitions?
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Exercise 7.3. Derive the policy outcome and governing coalition
for the remaining cases of the Austen-Smith and Banks model.



CHAPTER 8

Dynamic Games of Incomplete Information

In chapter 6, we saw that uncertainty about the preferences (pay-
offs) of others fundamentally alters the strategic situation players face
in static normal form games. The implications of this in dynamic,
multi-stage games lead to even more interesting strategic possibilities.
Consider the deterrence game of chapter 7.

Insert Figure 8.1 Here
Recall that the unique subgame perfect equilibrium is {Initiate,Acquiesce}.

Suppose however the game is changed to the following:
Insert Figure 8.2 Here

Now the subgame perfect Nash Equilibrium is {Do Not Initiate,Escalate}.
But what happens if the players do not know which game they are play-
ing? We now consider games in which players face uncertainty about
qualities of some of the other players. Games of this form are called
games of incomplete information. Just as in chapter 6, we can
model such uncertainty with the Harsanyi maneuver. The perspective
is that uncertainty about the payoffs of other players can be interpreted
as playing a game in which players are not certain about what history
they are at. This trick involves the use of a fictitious player—Nature—
that randomly selects players types from a distribution which is known
to the players. If we want to model a setting where player i does not
know player j’s preferences at a particular time then we assume that
nature chooses player j’s payoffs (type) prior to agent i’s decision and
we treat player i as facing an information set with multiple modes since
she did not see which player j type was drawn by nature. This trick
converts games of incomplete information — I don’t know the game—
to games of imperfect information —I know the game but I don’t know
what Nature did.
In principle, analysis of games of incomplete information strains

our ability to design satisfactory notions of equilibrium. But Mertens
and Zamir (1985) have shown, subject to some very technical condi-
tions, any description of incomplete information can be characterized
as a Bayesian game, though one with a potentially very large type
space. Following this conclusion, applied game theoretic models of

161
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incomplete information begin with a description of the incomplete in-
formation game as a game of imperfect information, with uncertainty
about players showing up as uncertainty about the realization of na-
ture’s randomization.1

To make sense of this discussion, we return to our example. Sup-
pose that Nature chooses game I with probability p and game II oth-
erwise. Now consider the following information structures.

(1) Suppose neither player observes Nature’s move as in Figure
8.3. Then we say that information is imperfect but symmetric
in that both players are in the same situation. This game is
easy to analyze since all we need to do is compute country B’s
expected utility of escalation and modify the game accordingly.
Since B’s expected utility of escalation is −p8 − 3(1 − p) =
−3− 5p,it prefers escalation whenever p < 1

5
. Thus, if p < 1

5
,

the outcome will be {Do Not Initiate,Escalate} otherwise it
will be {Initiate, Acquiesce} .

Insert Figure 8.3 Here
2. Suppose that only B observes Nature’s choice. This situation
is depicted in Figure 8.4. This information structure implies
that A will be uncertain of B’s choice. Since B only escalates
in game II,A’s expected utility from initiating is 4p−(1−p)8 =
−8 + 12p. Thus, A prefers initiating only if p > 2

3
.

Insert Figure 8.4 Here
3. Suppose that only player A observes Nature’s move as in Fig-
ure 8.5. Now the game has asymmetric information. This
changes the strategic situation dramatically. While B doesn’t
know Nature’s choice, it knows that A knows it. Thus, Amust
consider what information her choices provide about Nature’s
draw. To see how these informational incentives effect behav-
ior, consider the seemingly natural way of playing the game
where A initiates in game I, but not in game II. If A played
these strategies B would be able to infer from A’s initiation
that they are playing game I and should acquiesce. However,
if B responded in this way, A would have a strong incentive
defect by initiating even in game II.

1In this book and nearly all applied game theory, multiperson decision problems
with incomplete information are converted into games of imperfect information
using Harsanyi’s trick of letting nature select types from a well defined set with
common beliefs. This means that uncertainty about the preferences of players is
no different (theoretically speaking) than uncertainty introduced by simultaneous
moves or hidden actions.
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Insert Figure 8.5 Here
In this chapter, we focus on the strategic use of information in

dynamic settings. As we will see, incomplete information raises a
number of important issues.

• Strategic Use of Information: Do any of the players have
a strategic advantage based on how information is allocated?
In many games, informed player have important advantages.
However, we will see that often the uninformed player is ad-
vantaged.

• Learning: Can the uniformed players get more information
from observing the actions of the informed players? How do
these possibilities effect the strategies of the informed players?

• Signaling: Can the informed players credibly communicate
information about the game to the uninformed players? Can
informed players mislead uninformed players?

1. Perfect Bayesian Equilibria

In dynamic games with imperfect information, players are often
uncertain as to which histories (including Nature’s move) have been
reached at the point in which they move. While subgame perfection
can rule out some unreasonable Nash equilibrium, in many extensive
form games with imperfectly observed actions a stronger equilibrium
concept is needed. Consider the extensive form game depicted in Fig-
ure 8.6. Player 1 chooses whether to secretly deploy military capability
to attack an island. She can either not deploy any ships, ND, or she
send a small fleet of ships (S) or a big line of ships (B). Player 2
can only observe whether there was a deployment, as she can see the
ships coming, but cannot determine how many ships are coming. If
no deployment occurs then the payoffs are (0, 5) as player 2 keeps the
island. If there is an deployment, then player 2 must decide whether
to respond to the attack (R). If there is no response (NR) then player
1 wins the island. If there is a response, then player 2 wins the island
but the casualties for player 2 are much higher under S then under B.
The casualties for player 1 are higher under B then under S.

Insert Figure 8.6 Here
There are three Nash Equilibria to this game. The first is (ND,R).

This means that player 1 does not deploy, but if she did player 2 would
respond. The second Nash equilibrium is (B,NR). Player 1 deploys
a big line of ships, and player 2 does not respond. The profile (S,NR)
is also an equilibrium.
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There is something very perplexing about first Nash equilibrium.
Regardless of whether B or S is played, player 2 is better off playing
NR. Shouldn’t player 1 recognize this and send the ships? In the last
chapter, we used subgame perfection to get us out of such conundrums,
but that want help us here. Since this game has no proper subgames,
(NS,R) is also subgame perfect Nash equilibrium. .
Our argument that this profile is not reasonable is based on the

idea that player 1 should anticipate a rational response from player 2
at player 2’s information set. We incorporate this type of sequential
rationality into an equilibrium concept, by requiring that at each
information set agents form beliefs about which history they have
reached and select best responses given these beliefs. These equilibria
are called Perfect Bayesian Equilibria or PBE for short.
Returning to the example, we can see that no belief about the

history of play at Player 2’s information set justifies the selection of R
as a best response. Player 2 has to believe that either S or B ships
have been deployed. In either case, she is better off choosing NR.
Our example leans toward the trivial side of the spectrum so con-

sider a slight modification. In this game player 1 can only win the
island if she selects B. Moreover, player 2 would rather defend the
island if player 1 has selected S. Figure 8.7 depicts the relevant payoffs.

Insert Figure 8.7 Here

In this version whether R or NR is sequentially rational depends
on what beliefs player 2 assigns to the two possible histories in her
information set. If she believes that S was played thenR is sequentially
rational. Conversely if she believes that B was played then NR is
sequentially rational. What should she believe? Clearly, her beliefs
are based on expectations about what player 1 does. But player 1’s
choice will depend on what she expects player 2 to believe. How do
we close this loop?

1.1. Formal Definitions. In this section we present the tech-
niques needed to analyze games of this form. We now define the
concepts needed to characterize PBE. We start with beliefs over his-
tories.

Definition 8.1. Given an extensive form game with imperfectly
observed actions, ΓEI a belief on information set Ij ∈ I is a prob-
ability distribution on Ij. A belief profile is a mapping b : H → [0, 1]̇
such that for every Ij ∈ I b(·) is a belief on Ij (that is for every Ij ∈ IP

h∈Ij b(h) = 1 if Ij is finite and
R
h∈Ij db(h) = 1 if Ij is not finite).
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So in the examples above, a belief on player 2’s information set, is
a probability distribution over {S,B}. We use the term belief profile
to describe a complete list of beliefs for all information sets. Since
only one player makes a decision at each information set, there is no
ambiguity about whose beliefs are relevant on each portion of the belief
profile. If player i is called to make a choice at information set Ij then
the portion of the belief profile which describes the belief at information
set Ij describes player i’s belief at information set Ij.
Given a belief profile, we can define a condition on strategies known

as sequential rationality. Loosely speaking, sequential rationality re-
quires that all strategies be optimal at each information set given a
belief profile. To formalize this notion, let p(Ij) denote the player and
s(Ij) denote the action called for at information set Ij. These terms
are equivalent to p(h) and s(h) when h ∈ Ij. For a fixed strategy
profile s(·) we denote the expected utility to player p(Ij) associated
with the choice a at history h by Eup(h)(a, h, s(·)). This is an expected
utility (as opposed to a utility) because players other than p(h) may
play mixed strategies. When player p(Ij) assigns probability b(h) to
being at history h ∈ Ij conditional upon being at the information set
Ij, the expected utility to taking action a at information set Ij is

Eup(Ij)(a, Ij, s(·), b(·)) =
X
h∈Ij

b(h)Eup(h)(a, h, s(·)).

A strategy profile is sequentially rational relative to a belief if it in-
volves optimal actions at each information set, when players evaluate
the desirability of action a using Eup(Ij)(a, Ij, s(·), b(·)). Note that when
there is infinite set of possible histories, the summation is replaced with
integration.

Definition 8.2. Given an extensive form game with imperfectly
observed actions, ΓEI and a belief b(h) on each information set, the
strategy profile s(·) is sequentially rational (relative to the be-
liefs) at information set Ij if given any available action s0 we have

Eup(Ij)(s(Ij), Ij, s(·), b(·)) ≥ Eup(Ij)(s
0, Ij, s(·), b(·)).

If the strategy profile is sequentially rational (relative to the beliefs)
at every information set, then it is sequentially rational (relative
to the beliefs).

Returning to the example in Figure 8.7 above, if the beliefs assign a
probability close to 1 on S then R is sequentially rational at the infor-
mation set. Similarly if player 2 believes B then NR is a sequentially
rational response.
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We now consider a condition on beliefs known as consistency. Con-
sistency essentially requires that agents use Bayes’ Rule to formulate
their beliefs at Ij whenever possible.
Recall that Bayes’ rule provides us with probability that event A

occurs conditional the occurrence of B. It is given by

Pr(A | B) = Pr(A&B)

Pr(B)
.

Consequently, consistency requires that agents compute the probability
of particular history h ∈ Ij conditional on reaching Ij. Of course,
the probability of reaching Ij depends on the strategy profile that the
players are using. So we use Pr(Ij|s(·)) to denote the probability that
Ij is reached conditional the strategy profile s(·). Secondly, note that
since h is assumed to be an element of Ij and therefore by definition no
other information set, the probability that h and Ij are both reached
under strategy s(·) is simply the probability that h is reached. We
denote this probability as Pr(h|s(·)).
Therefore, Bayes Rule implies that the probability of reaching his-

tory h ∈ Ij conditional on reaching information set Ij under strategy
profile s(·) is

Pr(h | Ij, s(·)) =
Pr(h| s(·))
Pr(Ij| s(·))

.

Thus, weak consistency is the requirement that b(h) = Pr(h | Ij , s(·))
whenever possible.

Definition 8.3. Given an extensive form game with imperfectly
observed actions, ΓEI and a strategy profile s(·) we say that the beliefs
b(·) are weakly consistent relative to strategy s(·) if b(h) = Pr(h |
Ij, s(·)) whenever Pr(Ij | s(·)) > 0.

Of course, if Ij is not reached under s(·) then Pr(Ij| s(·)) = 0 so
that Bayes rule is undefined. Thus, consistency places no requirements
on beliefs on “out of equilibrium” information sets. This weakness is
sometimes problematic, as we will see. Combining weak consistency
of beliefs and sequential rationality of strategies yields the equilibrium
concept PBE.

Definition 8.4. Given an extensive form game with imperfectly
observed actions, ΓEI a perfect Bayesian equilibrium (PBE) is a
pair (s(·), b(·)) such that: (1) the strategy profile s(·) is sequentially
rational relative to the belief b(·), and (2) the belief b(·) is weakly con-
sistent relative to the strategy profile s(·).
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Thus a PBE requires the construction of beliefs. The existence of
beliefs allows us to define a notion of sequential rationality (optimality
of choices at histories). Moreover, the beliefs that players entertain
are related to the equilibrium strategies, in that histories which are
relatively more likely to be reached under a strategy profile, are be-
lieved to occur with a higher probability. It should not be surprising
that this notion equilibrium has a certain circularity to it. Recall,
that Nash equilibrium requires that strategies are individually best
responses given a conjecture of other players strategies and that the
conjecture turn out to be correct. Similarly PBE requires that strate-
gies be best responses given beliefs which depend on the conjectured
strategies of other, that the beliefs are reasonable given the strategies
and that the conjecture about strategies be correct.
Returning to the game in Figure 8.6, we can now consider what

strategy profiles occur in a PBE. Clearly the Nash equilibrium (ND,R)
is not supportable as a PBE, because for any beliefs about which history
S or B player 2 is at when her information set is reached, NR is the
unique response that is sequentially rational for 2 at the information
set. Now given that player 2 is choosing NR, player 1’s optimal
choice is to play either S or B. Now if player 1 chooses B then
consistent beliefs must assign probability 1 to player 2 being at history
B. Thus, one PBE is (B,NR), Pr(B) = 1, where Pr(B) is the posterior
probability of B given that player 2’s information set is reached under
player 2’s beliefs. Similarly there is a PBE of the form (S,NR),
Pr(B) = 0.
Now consider the game in Figure 8.7. If player 2 believes that

Pr(B) = 1 then NR is the best response. On the other hand if player
2 believes that Pr(B) = 0 then R is the best response. One candidate
for a PBE is (ND,R), Pr(B) = 0. Note that since no constraint is
imposed on beliefs over the histories B and S when player 1 plays ND,
the belief Pr(B) = 0 is consistent relative to the strategy ND But, the
strategy profile (ND,R) is not sequentially rational as player 1 would
prefer to play B than ND when she conjectures that player 2 is playing
R. It is also clear that ND cannot be a best response to NR.
Alternatively we can try to characterize a pure strategy PBE in

which ND is not played. If B is played and beliefs are consistent the
only sequentially rational strategy by 2 will involve NR. But if player
1 conjectures that player 2 is playing NR she will want to play S. So
we cannot have B played in a pure strategy PBE. On the other hand
if S is played then consistent beliefs must assign probability 1 to player
2 being at this history. Thus, the only sequentially rational action will
involve playing R. But if player 1 conjectures that player 2 is playing
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R then she will want to play B. Thus we cannot have a pure strategy
PBE in which S is played. We have thus shown that there is no pure
strategy PBE to the game.
It is not difficult to characterize the mixed strategy PBE to the

game. Suppose that player 1 plays B with probability q and b with
probability (1− q). Further suppose that player 2 plays R with prob-
ability z and NR with probability (1 − z). Consistency of beliefs
requires that Pr(B) = q. Now for player 2 to be indifferent between
R and NR it must be the case that

q(−5) + (1− q)2 = q(0) + (1− q)0

This requires that q = 2
7
. Now in order for player 1 to be indifferent

between playing B and S it must be the case that

(1− z)5 + z(−2) = (1− z)4 + z3

This requires that z = 1
6
. Accordingly the strategy profile, S with

probability 5
7
, B with probability 2

7
, R with probability 1

6
and NR with

probability 5
6
is supportable as a PBE, with the beliefs Pr(B) = 2

7
.

1.2. Signaling Games. An important class of games of imperfect
information involve asymmetric information with the more informed
agent, the sender, moving first followed by the less informed receiver.
These games take their name from the possibility that the sender’s
action will convey information about her type to the receiver. We
begin with the simplest possible signaling game to demonstrate some
of the potential incentives faced by the sender.
Let Nature draws a type θ ∈ {a, b} for player 1. Player 1 observes

her type and chooses a “message” m ∈ {a, b}. Player 2 observes the
message but does not observe player 1’s type. Following the message,
player 2 chooses a “policy” p ∈ {a, b}. The payoffs to each player from
a type, action pair are denoted ui(p, θ). Figure 8.8 depicts the game
form.

Insert Figure 8.8 Here
Here the non-trivial information sets involve moves by player 2 and

are represented by the dotted lines. When player 2 makes a policy
selection, she knows what message was sent by player 1, but she does
not know which state has been chosen by nature.
Assume that u2(p, θ) > u2(p

0, θ) and u2(p
0, θ0) > u2(p, θ

0) so that
player 2 would like to know θ before selecting p. We can motivate
this assumption with a simple interpretation: The value of θ effects
the desirability of each policy and player 1 wants to match θ and p
while player 2 wants the pair to be unmatched (θ 6= p). An example
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is a legislature (agent 2) choosing between two policy alternatives a
and b that are both risky but desirable in expectation. An informed
expert (agent 1) gives unverifiable testimony before Congress about the
relative risks of the two alternatives and θ denotes the identity of the
policy which is actually more risky. If the legislature is more risk
averse than the expert then the preference profile described above is
appropriate. In this game player 1’s action is called a cheap talk speech
because agent 2 cannot verify the accuracy of 1’s speech, and there is
no explicit cost to lying. Our assumption that 1 wants to match p and
θ while 2 does not is consistent with the following ordering of payoffs.

u1(b, a) < u1(a, a)

u1(a, b) < u1(b, b)

u2(b, a) > u2(a, a)

u2(a, b) > u2(b, b)

To make the description one of imperfect information, we need to fur-
ther specify a pair of prior beliefs over the state θ. Suppose that θ = a
with probability π > 1

2
. One natural question to ask is whether there

is a PBE in which player 1, the informed player, reveals her private
information. This would require that she use one of the following
strategies

m(θ) =

½
a if θ = a
b if θ = b

or

m(θ) =

½
b if θ = a
a if θ = b

.

We begin by focusing on the first message strategy. If player 1 uses
this strategy profile, consistency of beliefs requires that

b(θ = a | m = a) =
π · 1

π · 1 + (1− π) · 0 = 1

and

b(θ = a | m = b) =
π · 0

π · 0 + (1− π) · 1 = 0.

Given these beliefs sequential rationality requires that agent 2 select
policy according to the following mapping

p(m) =

½
b if m = a
a if m = b

.

The last thing to check is whether the specifiedm(·) strategy is sequen-
tially rational. Here the critical question is whether it represents a best
response to the mapping p(·). Note that if m = a the policy is b and if
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m = b the policy is a. Since u1(b, a) < u1(a, a) and u1(a, b) < u1(b, b)
a player 1 that has observed θ = a can deviate from the strategy and
announce m = b which will result in the outcome a. This outcome is
more desirable than the outcome of playing the conjectured strategy.
Similarly if player 1 observed θ = b, she can gain be deviating and
announcing m = a. This argument demonstrates that there is no PBE
in which the“truthful” message strategy m(θ) = θ is deployed. It is
left as an exercise to show that there cannot be a PBE in which the
second message strategy listed above is used.
The message strategies defined above are called separating because

if they are used by the sender then the receiver learns the type θ. We
showed that if the truthful message strategy is used then consistency
of beliefs required that the beliefs are deterministic.
While the game does not possess a separating equilibrium, there are

other possible PBE. Suppose that the sender sends the same message
(say a) regardless of θ.Thus m(θ) = a. Given this message strategy,
the receiver learns nothing from observing m. In this case consistency
of beliefs requires that

b(θ = a | m = a) =
π · 1

π · 1 + (1− π) · 1 = π.

What beliefs should the receiver form following an m = b? This
question is tricky. If we try to use Bayes’ rule we get

b(θ = a | m = b) =
π · 0

π · 0 + (1− π) · 0 =
0

0
.

Since 0
0
is not a number, Bayes’ rule is not well defined. This is because

Bayes’ rule conditions on a history that occurs with zero probability
given the strategy profile. The definition of weak consistency only
requires that beliefs obey Bayes’ rule when the denominator is greater
than zero. Accordingly, in our efforts to characterize an equilibrium
with the message strategym(θ) = a, the complication of defining b(θ =
a | m = b) is not insurmountable. Since weak consistency imposes no
constraints on this belief, we are allowed to specify this posterior in
whatever manner is required to help us construct equilibria. Let’s
say that b(θ = a | m = b) = π. Given this specification of beliefs,
the question of what receiver strategy is sequentially rational requires
simply comparing expected utilities. Policy a is more desirable if

πu2(a, a) + (1− π)u2(a, b) ≥ πu2(b, a) + (1− π)u2(b, b)
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Otherwise policy b is more desirable. Accordingly, if

(8.1) π ≥ u2(b, b)− u2(a, b)

u2(a, a)− u2(a, b)− u2(b, a) + u2(b, b)

then given these beliefs sequential rationality of p is satisfied by p(m) =
b. If the inequality in equation 8.1 is reversed then sequential rationality
of p is satisfied with p(m) = a. Finally, we must check that the message
strategy is sequentially rational given the policy function. This step
is trivial. Because the policy function is constant in m, any message
function is a best response. Accordingly, we have found a pooling
equilibrium of the signaling game.
Returning to the question of what b(θ = a | m = b) should be,

we can see that the answer to this question is quite important. As-
sume that π is sufficiently big so that the receiver’s best response is b.
Suppose, now that the b(θ = a | m = b) = 0. In this case sequential
rationality requires that p(b) = a. So changing the off-the path beliefs
and the requirement of sequential rationality means that the off-the-
path policy action must change. Can we construct an equilibrium with
these new beliefs and a policy function that uses the pooling message
function m(θ) = a? Consider a sender observes θ = a. In the con-
jectured equilibrium she is supposed to send message a. The receiver
learns nothing from the message and selects b because a is more likely
(π is high). But now, if our sender deviates from this conjectured
strategy and sends the message b, the receiver’s response is to select
policy a. If this conjectured strategy and belief profile is a PBE it must
be the case that the sender never has an incentive deviate in this way.
However, when θ = a the sender is better off deviating and eliciting
p = a instead of p = b. Thus, while the pooling message function was
supportable in a PBE with some consistent beliefs, it is not support-
able as a PBE with every set of consistent beliefs. The off-the-path
beliefs matter as they create incentives for on-the-path behavior.
Another way of constructing pooling equilibria in this game is to

appeal to mixed strategies, by the sender. Suppose now that regardless
of her type the sender sends message a with probability σ ∈ (0, 1)̇.
Given this Bayes’ rule yields

b(θ = a | m = a) = b(θ = a | m = b) = π

As before characterizing sequentially rational strategies for the receiver
hinges on π. One key difference between this pooling equilibria with
mixed messages and the case of pure message strategies, is that with
mixed strategies Bayes’ rule pins down the beliefs at every observable
information set.
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In more general settings we can characterize equilibria along these
lines, separating, pooling, and introduce another category called par-
tially separating or partially pooling.2

Definition 8.5. In a general signaling game with multiple senders
and one receiver in which each player has a type space Θi, message
space Mi and the receiver has prior beliefs π(·) on Θ = ×iΘi we have
the following: in a separating equilibrium on the equilibrium path the
receivers posterior beliefs are concentrated at the true state. In a pool-
ing equilibrium, on the equilibrium path the posteriors correspond to
the priors, in a partially separating equilibrium neither of the above
conditions are true.

2. Application: Entry Deterrence in Elections

One of the most intriguing puzzles in the study of campaign fi-
nance is the question of why incumbent politicians exert so much effort
to raise more campaign money than seems necessary to simply finance
their campaigns. A standard explanation is that incumbents raise to
these sums to deter entry by potential challengers. Thus, fundraising
success is used to signal the incumbent’s electoral strength. A formal
model of this phenomenon has been developed by Epstein and Zemsky
(1995). Suppose a challenger is deciding whether to run against an
incumbent for office, but that the challenger only wishes to run when
the incumbent is politically “weak.” If the incumbent is “strong”, the
challenger would rather sit out the race. Conventional wisdom sug-
gests that the incumbent may wish to signal to the challenger that she
is strong by raising a large amount of campaign monies before the chal-
lenger decides to enter. If this “war chest” convinces the challenger
that the incumbent is strong, he may be deterred from entering. To
capture this intuition in a model, let po be the prior probability that
the challenger (C) places on the incumbent (I) being strong (S). Ob-
viously, 1−po is the probability that the incumbent is weak (W ). Both
the C and I get 1 unit of utility from office. Let the probability that
C wins against W be πw while C beats S with πs where πw > πs. Let
k be C’s cost of running where to keep things interesting we assume
that πw > k > πs. If k > πw, C would never enter and if k < πs he
would always enter.
The key assumption of the model is that S and W have different

costs of raising a war chest. To keep things simple, we model only

2Those who see the glass half-empty will probably prefer the term partially
pooling. Others will find partially separating more in line with their philosophies
of life.
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whether or not the incumbent builds a war chest, but not his choice of
size. Thus, the incumbent’s strategy set is SI = {WC, ˜WC} where
WC is the decision to build a war chest and ˜WC the decision to forgo
one. By sI ∈ SI we denote the strategy chosen by I. Thus, we assume
that types W and S must pay cw and cs respectively to build a war
chest where cs < cw. Note that the probability that the incumbent
wins depends only on his type. There is no direct effect of the war
chest except for its role in signaling the incumbent’s strength to the
challenger. After observing whether I builds a warchest, C decides
whether to enter the race E or sit it out ˜E.
Figure 8.9 provides the extensive form of this game. We begin our

analysis with the last stage of the game. Clearly C will only enter if
the expected utility of entering is greater than or equal k. Thus, entry
requires that πs Pr{S|sI}+ πw Pr {W |sI} ≥ k.

Insert Figure 8.9 Here
Note that the game in Figure 8.9 can also be in presented in a

manner similar to Figure 8.8. We depict both approaches to familiarize
readers with different graphical presentations.

2.1. The First Period. In the first period,W and S must choose
strategies. There are three possible types of equilibria:

(1) Separating: S and W choose the different actions.
(2) Pooling: S and W choose the same strategies
(3) Semi-pooling: S and W choose different mixed strategies.

2.1.1. The Separating Equilibria. We first consider a separating equi-
librium where the strong incumbent builds a war chest and the weak
incumbent does not. Given these strategies, the challenger will learn
the incumbent’s type in equilibrium and will enter only if the incum-
bent does not build a war chest.

Proposition 8.1. If cs ≤ πs and cw ≥ πw, the following strate-
gies and beliefs constitute a perfect Bayesian equilibrium:s(S) = WC,
s(W ) = ˜WC, s(C) = E if ˜WC and ˜E otherwise,Pr{S|WC} = 1,
and Pr{S|˜WC} = 0.

Given these strategies, the application of Bayes’ rule suggests that
C’s equilibrium beliefs are Pr{S|WC} = 1 and Pr{W |˜WC} = 1.
Since πw > k > πs, C’s strategy to enter only in the absence of a war
chest is a best response. Now, we need to check that the incumbent’s
strategies are best responses. Incumbent S’s utility fromWC is 1− cs
which is greater than her utility of ˜WC which is 1− πs since cs ≤ πs.
Now, we check whether s(W ) = ˜WC is a best response. The payoff
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for building a war chest is 1 − cw while the utility for not building a
war chest is 1− πw. So ˜WC is a best response since we assume that
cw ≥ πw.
It is worth trying to generate some intuition as to why the con-

ditions cs ≤ πs and cw ≥ πw are required to support a separating
equilibrium. It is clear that for a war chest to credibly signal strength
it must be substantially more costly for the weak incumbent to build it.
If this were not the case, weak incumbents would also build war chests
and it would no longer be sequentially rational for C to be deterred.
But if war chests did not deter challenges, neither type would seek to
build them, destroying the PBE.
Next we show that there exist no equilibria where the signal is re-

versed so that weak incumbent build warchests and strong incumbents
do not.

Proposition 8.2. s(S) = ˜WC and s(W ) = WC cannot be a
Bayesian Nash equilibrium.

To see that the claim is true, note that C’s best response to these
strategies would be {enter ifWC}. Then S would get a utility of 1 for
˜WC and 1−πs−cs forWC. So S’s strategy would be a best response.
However, consider W ’s best response. She would get 1− πw − cw for
WC and 1 for ˜WC. Clearly, s(W ) =WC is not a best response.
The reason that no such separating equilibria exists can perhaps be

understood in terms of the concept of incentive compatibility. We say
that a messages m and m0 are incentive compatible for types θ and θ0

if and only if EU(m|θ) ≥ EU(m0|θ) and EU(m0|θ0) ≥ EU(m|θ0). In
other words, each type must weakly prefer its own message to that of
the other type. Clearly, incentive compatibility is a necessary condition
for a PBE.
Note that for the reversed signals to be an equilibrium, the incentive

compatibility requirements are

EU(˜WC|S) ≥ EU(WC|S)
EU(WC|W ) ≥ EU(˜WC|W )

We can combine these requirements by adding the inequalities and
moving things around so that

EU(˜WC|S)−EU(˜WC|W ) > EU(WC|S)− EU(WC|W )

which becomes

Pr{E|˜WC} (πw − πs) > Pr{E|WC} (πw − πs) + cw − cs
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Note that since cw > cs and πw > πs, the incentive compatibility
constraints require that Pr{E|˜WC} > Pr{E|WC}. However, given
C’s beliefs, this cannot be a best response. Therefore, reversing the
signal is not a PBE.
We will see this incentive compatibility approach used much more

extensively when we look at models of mechanism design in chapter 11.
2.1.2. Pooling Equilibria. Now we turn to the analysis of pooling

equilibria where both types of incumbents choose the same strategy.
Generally, the easiest way to construct such equilibria is to specify
the most unfavorable beliefs possible in the event that one of the
senders chooses the out-of-equilibrium message. In this context, this
requires that C believe that the incumbent is weak following an out-
of-equilibrium action. If these “pessimistic” beliefs support a strategy
profile, then that profile constitutes a PBE. However, a number of
slightly less pessimistic beliefs will also support that profile as a PBE.
So its a good practice to compute the set of beliefs that support each
PBE. In the current model, this requires us to specify the largest
posterior on Pr{S} following the defection that supports the PBE.
Proposition 8.3. Suppose that po ≥ πw−k

πw−πs . The following strate-
gies and beliefs are a perfect Bayesian equilibrium: s(W ) = s(S) =
˜WC; s(C) = {E ifWC}, Pr{S|˜WC} = po and Pr{S|WC} ≤ πw−k

πw−πs .

Since W and S play the same strategy, Bayes’ rule implies that
Pr{S|˜WC} = po. So C’s utility from entering is

πspo + πw(1− po)− k = πw − (πw − πs) po − k

so C will enter if po ≤ πw−k
πw−πs after observing ˜WC. What should C

believe and do if he observes WC? Nash equilibrium is silent about
what to do off the equilibrium path. Note that we cannot apply Bayes’
rule because the denominator would be zero. So we assign the arbitrary
beliefs Pr{S|WC} ≤ πw−k

πw−πs after observingWC. Thus, C should enter
if he observes WC. Now consider the strategies of S and W . They
both get 1 for not building a war chest and 1−πs− cs and 1−πw− cw
respectively for building one. Thus, their strategies are best responses.

Proposition 8.4. Suppose that po < πw−k
πw−πs . The following strate-

gies and beliefs are a perfect Bayesian equilibrium: s(W ) = s(S) =
˜WC; s(C) = {E}, Pr{S|˜WC} = po and Pr{S|WC} ≤ πw−k

πw−πs .

Clearly, C’s strategy of entering is a best response since regardless
on what the incumbent does C will think it unlikely that the incumbent
is S. On the equilibrium path, Bayes’ rule implies that Pr{S|˜WC} =
po. Off the equilibrium path, we are free to assign Pr{S|WC} ≤
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πw−k
πw−πs . Since C always enters, a war chest by either type of incumbent
is a waste of resources. Thus, neither type of incumbent builds one.

Proposition 8.5. Suppose that po ≥ πw−k
πw−πs . The following strate-

gies and beliefs are a perfect Bayesian equilibrium: s(W ) = s(S) =
˜WC; s(C) = {˜E}, Pr{S|˜WC} = po and Pr{S|WC} ≥ πw−k

πw−πs .

C’s best response given the beliefs on the equilibrium path is to stay
out of the race. Suppose instead that the incumbent defected and built
a war chest. In this equilibrium, C believes that it is relatively likely
that the incumbent is strong at the out-of-equilibrium information set.
So C still chooses ˜E. Since C always stays out, it is optimal for neither
incumbent to build a war chest.

Proposition 8.6. Suppose that po ≥ πw−k
πw−πs , cs ≤ πs, and cw ≤ πw

The following strategies and beliefs are a perfect Bayesian equilibrium:
s(W ) = s(S) = WC; s(C) = {E if ˜WC}, Pr{S|WC} = po and
Pr{S|˜WC} ≤ πw−k

πw−πs .

Clearly, given equilibrium beliefs, C’s strategy is a best response.
If C observes ˜WC, we assign a probability of S sufficiently low so that
she chooses E following a defection. So consider incumbent S who gets
1−cs in equilibrium but gets 1−πs by defecting. So S will chooseWC
so long as cs ≤ πs. Incumbent W gets 1 − cw from the equilibrium
and 1− πw from defecting so WC is a best response if cw ≤ πw.

Proposition 8.7. There is no equilibrium where s(W ) = s(C) =
WC and C always enters.

Both types would defect to ˜WC since it does not change C’s be-
havior.
Clearly, there are two types of pooling equilibria to this game: one

where both incumbents build warchests and one where neither does.
Note that both reveal the same amount of information to the chal-
lenger, namely none, but differ in the costs incurred by the incumbent.
Clearly, every player prefers the PBE where both types play ˜WC to
the one where they both play WC. Thus, we can refer to the former
as the efficient PBE and the latter as the inefficient one. Importantly,
there is nothing intrinsic to the concept of PBE to predict which of
these equilibria are more likely to be played. However, as we will
see, various authors have proposed criteria for refining the set of PBE.
Often these refinements select the efficient PBE.
2.1.3. Partial Pooling. The remaining possibility is that at least

one of the incumbent types chooses a mixed strategy that occasion-
ally separates from the other type and occasionally pools. There are
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a couple of reasons for exploring such possibilities. First of all, if
such equilibria exist, a full characterization of the set of PBEs requires
analysis of partial pooling equilibria.3 Secondly, authors sometimes
would like to analyze the most informative equilibrium i.e. the one in
which the receiver’s posteriors are closest to the true distribution of
types. In many cases, semi-pooling equilibria will exist for parameter
values for which there are no separating equilibria. In this cases, the
partial pooling equilibria will be the most informative.
We present only one of the partial pooling equilibria, and leave the

other possibility to the reader as an exercise. In this equilibrium, the
S incumbent always builds a warchest. However, the W incumbent
also builds one with probability q.

Proposition 8.8. If cw
πw

> cs
πs
, then s(S) =WC, s(W ) = {WC with

prob= q}, C = {enter if ˜WC and enter with probability r if WC} is
a perfect Bayesian equilibrium.

Clearly, Bayes’ rule implies that Pr{S|˜WC} = 0 and thus follow-
ing ˜WC entry is a best response. WhenWC is observed, Bayes’ rule
is more complicated:

Pr(S |WC) =
Pr(WC | S) Pr(S)

Pr(WC | S) Pr(S) + Pr(WC |W ) Pr(W ) =
p0

p0 + q(1− p0)

Since C plays a mixed strategy, he must be indifferent between entering
or not entering so that

πs Pr{S|WC}+ πw Pr{W |WC} = k

or
πsp0

p0 + q(1− p0)
+

πwq(1− p0)

p0 + q(1− p0)
= k

Solving we find that

q∗ =
p0(k − πs)

(1− p0)(πw − k)
.

When C chooses r, it must make W indifferent between building WC
and not doing so. IfW chooses ˜WC, she gets 1−πw. ChoosingWC
gets r (1− πw) + (1 − r) − cw. So the indifference condition implies
that

r∗ =
πw − cw

πw

3The authors have revelaed their type.



178 8. DYNAMIC GAMES OF INCOMPLETE INFORMATION

Now we need only check that S prefers WC. If she plays ˜WC she
gets 1 − πs whereas in equilibrium she gets r (1− πs) + (1 − r) − cs.
Thus,

EUS(WC)−EUS(˜WC) = πs (1− r)− cs =
πscw
πw
− cs > 0

by assumption.
We know from above that the separating equilibrium only exists

when cs
πs
≤ 1 ≤ cw

πw
while the semi-pooling equilibrium that we have

just considered exists when cs
πs

< cw
πw
. Thus, whenever the separating

equilibrium exists, the semi-pooling equilibrium must also exist. How-
ever, the partial pooling equilibrium exists in many circumstances (i.e.
cw
πw

< 1) where the separating equilibrium does not.

3. Application: Information and Legislative Organization

One of the longest standing debates about legislative politics is the
nature of the role of standing committees. While some scholars have
focused on their role in stabilizing majority rule (Shepsle 1978), main-
taining distributive coalitions (Shepsle and Weingast 1987, Weingast
and Marshall 1988) while others have focused on their role in promot-
ing the interests of the majority party (Cox and McCubbins 1994).
However, Gilligan and Krehbiel (1987) present an alternative model
based on the idea that the role of committees is to specialize in the
development of policy-specific expertise. This quite influential theory
is based on games of incomplete information.
The basis of these models is the idea that policymakers do not

always know the exactly link between their policy choices and the ul-
timate policy outcomes. For example, legislators may not know how
a specific agricultural policy will affect farmer’s incomes because of a
number of unforeseeable intervening variables such as the weather and
competition from foreign producers. Since legislators would presum-
ably value such information, they should desire institutional arrange-
ments that facilitated its gathering and transmission. Gilligan and
Krehbiel argue that a committee system with some limited parliamen-
tary rights will help solve these informational problems.
To capture the distinction between policy choices and outcomes,

Gilligan and Krehbiel assume that the policy outcome x is a additive
function of policy p and random term ω so that

x = p+ ω.

Their game is played between two players: the floor F and the com-
mittee C. In our version of the model, we assume that C knows ω
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with certainty but that F ’s prior beliefs are that:

ω =

½
θ with prob .5
−θ with prob .5

They assume that each has quadratic spatial preferences over a single
dimension and that F has an ideal point of 0 and C has an ideal point
c > 0. Thus, the payoffs are uF (x) = −x2 and uC(x) = −(c − x)2

respectively. However, since F does not know ω, his utility from a
given policy p is given by the following expected utility:

.5uF (p+ θ) + .5uF (p− θ) = −.5[p2 + 2pθ + θ2]− .5[p2 − 2pθ + θ2]

= −p2 − θ2

Thus, F ’s utility has two components. The first is −p2 which reflect
the difference between his ideal point and the expected policy while the
second is −θ2 which reflects the variance in the policy shock ω. Thus,
F is risk adverse in that he would be willing to “pay” to obtain informa-
tion about ω. Our concern here is whether F may be willing to grant
extra parliamentary rights to C to provide it with the incentive spe-
cialize and provide information. Formally, F chooses the procedures
or rules under which legislation proposed by C can be considered. To
simply things, we assume that F chooses between the following types
of rules:

(1) Open rule: The committee reports a bill and the floor may
freely amend it.

(2) Closed Rule: The F must vote up or down on C’s proposal
against the status quo, SQ = 0.

The closed rule obviously represents more extensive parliamentary
rights for C since she can make a take-it-or-leave to F . To solve this
as a game of incomplete information, we need to specify strategies of
both “types” of committees (−θ, θ), beliefs of the floor following any
proposal, and the floor’s best response given these beliefs. Following
Gilligan and Krehbiel, we will look for the most “informative” equilib-
rium. In our context, we will mainly be interested in whether or not
a separating equilibrium exists.4

3.0.4. Open Rule. Under the open rule, the committee must worry
about whether the information it provides can be used to “roll” it on
the floor. Suppose that the committee revealed all of its information

4The reader who is paying attention should respond “aha! but haven’t you
warned us that informative semi-pooling equilibria can sometime exist when sep-
arating equilibria do not!” The attentive reader should consult excercise 8.6 and
verify for herself that this is not one of those cases.
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by proposing its ideal policy for each outcome. This means that the
committee chooses pc so that x = c or pc = c − θ when ω = θ and
pc = c + θ when ω = −θ. Since there are distinct proposals for each
state of the world, these proposal strategies fully reveal all information
to the floor. Thus, under an open rule, the floor will amend until
x = 0 or pf = −θ when ω = θ and pf = θ and ω = −θ. Therefore,
utilities for this equilibrium are uF = 0 and uC = −c2. Since we are
interested in determining whether or not a separating equilibria exists,
we will specify the beliefs most unfavorable to C following an out-of-
equilibrium proposal. Thus, we assume that F treats any other bill as
if it came from the “high” type: ω = θ and adopts pf = −θ. Given
F ’s best responses, it is easy to see that there are three only outcomes
that C can generate −2θ, 0, 2θ.
Now we can check to see if C like to defect from this separating

equilibrium. If she defects by proposing c + θ when ω = θ, F will
pass pf = θ. Since the resulting outcome is 2θ, C’s utility from the
defection is−(c−2θ)2. Alternatively, by proposing c−θ when ω = −θ,
pf = −θ leading to x = −2θ and uc = −(c + 2θ)2. Finally, consider
pc /∈ {c+ θ, c− θ} . Since all of these proposals generate pf = −θ,
uc(θ) = −c2 and uc(−θ) = −(c+ 2θ)2.
Since c > 0 and θ > 0, the highest utility defections are given in

Table 1.

Table 8.1: Possible Defections
Defection Conditions Utility
pc = c+ θ if ω = θ and c > θ −(c− 2θ)2
pc /∈ {c+ θ, c− θ} if ω = θ and c < θ −c2
pc 6= c+ θ if ω = −θ −(c+ 2θ)2

Clearly the “low” type won’t defect, since −c2 > −(c+ 2θ)2. Sim-
ilarly if c < θ, the“high” type will not defect since her equilibrium
utility is the same as that of her most profitable defection. However,
when c > θ and ω = θ, the high type prefers the utility of −(c− 2θ)2
to her equilibrium payoff. Therefore, the separating equilibrium does
not exist whenever c > θ. Absent a separating equilibrium, the only
equilibrium is an uninformative pooling equilibrium where both types
use the same mixed strategy across the set of proposals.
Thus, when the committee is an “outlier” i.e. c > θ, no information

can be revealed. In this case, the high type wants to convince the floor
that ω = −θ since it prefers policy θ to 0.

3.0.5. Closed Rule. Under the open rule, a major reason why infor-
mation cannot be revealed by the “outlier” committee is that the floor
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will use this information to “roll” the committee and move policy to
the floor median. However, under the closed rule, the committee can-
not be “rolled”. The floor must accept or reject the proposal in favor
of the status quo. So now suppose there is a separating equilibrium
where F learns the value of ω. The utility of the status quo is −ω2
and of any other proposal −(p+ ω)2. This implies that F will accept
any proposal in the interval between 0 and −2ω. Thus, when ω = θ,
the largest policy F will accept is 0. This results in an outcome of θ.
When ω = −θ, the largest policy F will accept is 2θ. This also results
in an outcome of θ.
So the committee can guarantee an outcome as high as θ by propos-

ing pc = 0 when ω = θ and pc = 2θ otherwise. If c < θ, an outcome of c
can be guaranteed by proposing pc = c− θ when ω = θ and pc = c+ θ.
To complete the specification of the perfect Bayesian equilibrium,

we need to specify F ’s behavior and beliefs following any out-of-equilibrium
proposals from C. To support all possible separating equilibria, it is
sufficient to have F accept any proposal such that −2θ ≤ pc ≤ 0 and
vote down out-of-equilibrium proposal pc > 0 and . This strategy is
a best response to the beliefs Pr {ω = θ|pc} = 1 following an out-of-
equilibrium proposal.
Now we check that C prefers its equilibrium strategy to any defec-

tion. When c < θ, C gets its ideal point so she cannot do better by
defecting. Thus, a separating equilibrium exists, just as it did for the
open rule. So we need only focus on the case where c > θ. First
suppose that ω = −θ, then C gets −(c− θ)2 for pc = 2θ and −(c+ θ)2

for any other bill. C will not defect in this case. Now suppose that
ω = θ, then C receives −(c−θ)2 for pc = 0, −(c−3θ)2 for pc = 2θ, and
−(c− θ)2 for any other bill. Thus, so long as c < 2θ, C weakly prefers
her equilibrium proposal pc = 0. However, if c > 2θ, the committee
will defect so that no separating equilibrium exists. In this case, the
only equilibria are uninformative ones such as those where both types
of committee use the same mixed strategy over all proposals and the
floor rejects all proposals except pc = 0.
Since the closed rule can sustain a separating equilibrium in cases

where the open rule cannot i.e. 2θ ≥ c > θ, the model predicts that
restrictive rules might be employed to encourage greater information
transmission from the committee to the floor.

3.1. Committee Specialization. In the preceding section, we
showed that our version of the Gilligan-Krehbiel model predicts that
restrictive rules can encourage more information transmission from in-
formed committees than do open rules. We now turn to an analysis of
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whether a commitment to restrictive rules by the floor can induce the
committee to specialize in the first place. So now the game takes the
following form:

(1) F chooses whether or not the committee will report the bill
under open or closed rule.

(2) C decides whether to specialize by paying a cost k to learn ω.
(3) C proposes pc.
(4) Under closed rule, F votes pc up or down against SQ. Under

open rule, F chooses pf .
If the committee does not specialize, F will decide based on its prior

beliefs. Therefore, under the closed rule, she will veto any proposal
other than pc = 0. Under the open rule, F passes pf = 0. Thus,
non-specialization results in a policy of p = 0 for both rules.
Now consider the committees specialization decision under open

rule. If the committee specializes when c ≤ θ, C and F play the open
rule separating equilibrium resulting in an overall payoff of −c2− k for
the committee. If the committee does not specialize, then its expected
utility from p = 0 is −c2 − θ2. So the committee specializes so long
k ≤ θ2. If c > θ and the committee specializes, the committee and
floor will play the pooling equilibrium which leads to p = 0 and an
overall committee payoff of −c2 − θ2 − k. Thus, the committee will
obviously not specialize under these circumstances.
Now consider the closed rule. If c ≤ θ, the separating equilibrium

generates an outcome of c so that the committee’s utility of specializing
is −k. Similarly, if c > θ, the utility of specializing is −(c−θ)2−k. In
both cases, non-specialization leads to a payoff of −c2−θ2. Comparing
these utilities, we find that it pays for the committee to specialize when
k ≤ 2θc and c > θ and when k < c2+θ2 and c ≤ θ. Since both of these
critical values for k are higher than θ2, the committee often specializes
under closed rule when it would not have under open rule.

3.2. Implications. Gilligan and Krehbiel draws several implica-
tions about institutional design by computing the floors utility under
the different rules. The floor’s expected payoffs under open rule are

E[uF ] = 0 if c ≤ θ and k ≤ θ2

E[uF ] = −θ2 if c > θ and k > θ2

while the payoffs under closed rule are
E[uF ] = −c2 if c ≤ θ and k ≤ c2 + θ2

E[uF ] = −θ2 if c > θ and k > c2 + θ2

There are a couple of implications worth noting. First, F always
is always better when C’s ideal point is close to the floor’s ideal 0.
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This is the basis of Krehbiel’s argument that majoritarian legislatures
should attempt to appoint committees that are representative of the
preferences of the chamber. He contrasts this implication with that of
the distributive theory of legislatures which predicts that committees
will be composed of high demanders for the policies in the committees
jurisdiction.
Secondly, the model makes predictions about when F will prefer a

closed rule. Specifically, F will choose a closed rule when c ≤ θ and
θ2 ≤ k ≤ c2 + θ2. Thus, the committees most likely to receive closed
rules are those whose ideal point does not diverge from the floor and
those with intermediate specialization costs.

4. Application: Informational Lobbying

The traditional literature on lobbying in legislatures has uncovered
a striking empirical regularity: interest groups almost always lobby
their friends. Since these friends are likely to vote with the inter-
est group anyway, this observation has been interpreted to mean that
lobbying activities are not very consequential.
However, Austen-Smith and Wright (1992, 1994) develop a model

where groups do indeed lobby their friends, but that their efforts are
important. The main premise of their model is that interest groups
have private information about the consequences of a legislative de-
cision that are unknown to the legislator. “Lobbying” consists of a
group making a speech to the legislator. Since lobbying is assumed
to be costly, groups will choose whether or not lobby the legislator.
The main result of their paper is that groups will often lobby friendly
legislators to counteract the lobbying efforts of opposing groups.
Before analyzing the full model, we begin with a model with only

one interest group and a legislator. The legislator is required to choose
between two policies A and B. However, she is uncertain as to which
policies she prefers. Assume that there are two states s = A or B
such that the legislator prefers policy A in state A and B in state
B. To keep things simple, we assume that uL (A) = 1 in state A
and uL (A) = −1 in state B. We assume uL (B) = 0 in both states.
The legislator believes that s = A with probability p < 1

2
. Thus, in

the absence of any additional information provided by lobbying, the
legislator will choose B.
Suppose that there is an interest group GA who prefers A to B.

We assume that uGA
(A) = 1 and uGA

(B) = 0 in both states. If GA

decides to lobby, it pays cost c > 0 to learn the true state with certainty.
Its ex ante beliefs about the state are the same as L’s. Once informed,
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the group sends one of two messages m = A or B where the messages
are to be interpreted literally.
After observing message m, L may attempt to verify the group’s

information by “auditing” the message. In doing so, L incurs cost
κ. If the message is found to be incorrect i.e. m 6= s, the group is
penalized by an amount δ.
Now consider the group’s possible lobbying strategies. First, sup-

pose GA always reports A independent of s. Then the message would
be uninformative and L would always vote B if she does not audit and
will choose the optimal outcome following an audit. Since the utility
of an audit is 1 − κ, it is easy to show that L’s best response to an
“always A” strategy involves auditing if and only if p > κ.
Since an “always A” lobbying strategy does not affect the outcome,

GA would prefer not to lobby at all. Therefore, successful lobbying
requires that GA tell the truth at least some of the time. Suppose
GA told the truth all of the time. Then L would always follow such
advice. However, this would give GA the incentive to report A even
when s = B. Since GA has an incentive to deviate, this cannot be an
equilibrium.
Thus, any perfect Bayesian equilibrium to this game has to be semi-

pooling. So consider an equilibrium where GA always reports A when
s = A and reports A with probability µ when s = B. Such a strategy
leads L to update (using Bayes’ Rule) her belief that s = A to

bp = p

p+ µ (1− p)
.

In such an equilibrium, L must be indifferent to voting for A and
auditing. The expected utility of voting A is 2bp−1 whereas the utility
of auditing is bp− κ. So the group will choose µ so that

p

p+ µ (1− p)
= 1− κ

or
µ =

κp

(1− p) (1− κ)
.

To close the model, L must choose a probability of auditing α so that
GA is indifferent between lying and being truthful when s = B. If
GA is truthful, it gets −1. If GA lies, it gets −α (δ + 1) + (1− α) 1.
Therefore, L sets

α =
1

δ + 2
.

Given these lobbying and auditing strategies, we can compute GA’s
expected utility to determine whether or not it will choose to become
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informed and lobby. Since L always chooses B in the absence of
lobbying, the group’s utility from not lobbying is −1. If it does lobby,
the group gets A for sure when s = A and an expected utility of −1
when s = B. Thus, the ex ante expected payoff from lobbying is
2p− 1− c. Thus, the group lobbies if and only if p > c

2
.

That this equilibrium requires 0 ≤ µ ≤ 1 suggests that we need
1 − p > κ > 0. Thus, it cannot be too costly for the legislator to
audit. If it is too costly, the legislator will not audit which guarantees
that the group has the incentive to always lie. However, if the group
always lies, lobbying will be ineffective and the group will choose not
to become informed.
Now consider the model with two groups. Suppose now that there

is a group GB with preference opposed to GA so that uGB
(B) = 1 and

uGB
(A) = −1. It also may learn the true state by paying a cost c.

We assume that both groups decide whether to become informed and
choose their messages, mA and mB, simultaneously.
First, note that since L chooses B in the absence of lobbying there

can be no equilibriumwhereGB lobbies butGA does not. IfGB lobbied
alone, it would incur cost c without altering the outcome. Austen-
Smith and Wright interpret this result as implying that groups only
lobby “friendly” legislators to counteract the lobbying of other groups.
Since the outcome of GA lobbying alone is outlined above, we need

only focus on the outcome when both groups lobby. Consider the
following equilibrium. Both groups send truthful messages. When
mA = mB = s, the legislator believes that the true state is s. However,
if mA 6= mB, L audits the message and chooses her optimal policy. For
auditing to be a best response to the out-of-equilibrium messages, we
specify that bp ≥ κ if mA 6= mB.
Now we check that GA will not deviate and choose an untruthful

message. Clearly, it has no incentive to choose mA = B when s = A.
So consider whether it will choose mA = A when s = B. Given GB’s
strategy, this results in a posterior of p. Since this message will lead
to an audit, it results in a policy of B and a penalty of δ for a total
payoff of −1 − δ. Since telling the truth leads to a payoff of −1, GA

has no incentive to deviate.
Turning to GB’s decision, we need to check that it will not choose

mB = B when s = A. As before, such a message leads to an audit
and a penalty for GB. Thus, it will not defect.
Now we must verify the conditions under which both groups would

prefer to lobby. Since lobbying by both groups leads to the full infor-
mation outcome, the equilibrium utilities of GA and GB are 2p− 1− c
and 1 − 2p − c respectively. If only GA lobbies, its utility 2p − 1 − c
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so that its utility from lobby is independent of GB’s choice. However,
note that GB’s utility from having GA lobby alone is

−p+ (1− p) [µ (2α− 1) + (1− µ)] = 1− 2p−
∙

κp

(1− κ)

2δ + 2

δ + 2

¸
Therefore, GB will only decide to lobby if p > 1−κ

κ
δ+2
2δ+2

c.
Thus, we can characterize the equilibrium lobbying decisions of both

groups as follows. If p < 1
2
c, neither group lobbies. If 1−κ

κ
δ+2
2δ+2

c > p >
1
2
c, only GA lobbies. If p > 1−κ

κ
δ+2
2δ+2

c, both groups lobby.
Austen-Smith and Wright interpret this perfect Bayesian equilib-

rium as implying the following hypotheses.
• Ceterus paribus, when a legislator is lobbied by groups from
just one side of an issue, the only groups that lobby are those
opposed to the legislator’s ex ante position.

• The decision of a group to lobby an “unfriendly” legislator is
independent of the lobbying decisions of opposing groups.

• Conditional on a “friendly” legislator being lobbied by an op-
posing group, a group’s decision to lobby that legislator is
purely counteractive.

5. Refinements of Perfect Bayesian Equilibrium*

5.1. Sequential Equilibria. By now it should be clear that weak
consistency lives up to its name by not being a strong enough constraint
on off the path actions. In fact PBE need not even be subgame perfect,
a fact demonstrated by the example illustrated in Figure 8.10.

Insert Figure 8.10 here
In this extensive form game, C is a potential candidate for office,

and must decide whether to run or not. After this decision, a popular
media source such as the local newspaper decides whether to endorse
C or not. Following this decision, but without knowing the media’s
decision, the incumbent I must decide how much campaign effort to
exert.5 The payoffs are chosen to reflect the fact that C prefers to
enter only if he is endorsed and the incumbent chooses low effort, the
media prefers to endorse C only if the incumbent chooses low effort,
and the incumbent prefers to exert effort only when C is not endorsed.
In Figure 8.10, the shaded branches denote a strategy profile and

the numbers p = 0 and p = 1 denote beliefs. It is not difficult to see
that the figure depicts a PBE. Given the belief that “not endorse”
occurs with probability 1, the incumbent optimally selects high effort.

5We can also interpret the endorsement and effort decisions as occuring
simultaneously.
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Moreover, given the expectation that endorsement and high effort will
follow a decision to run, the optimal decision for C is to not run for of-
fice. Given this strategy profile, the incumbent’s information set is not
reached and thus weak consistency does not restrict beliefs. Despite
the fact that this is a PBE, the specified strategy profile is not even
subgame perfect. To see this, consider the circled subgame that starts
with m’s decision. Given that m is choosing endorse, high effort is not
a best response. The pathology exhibited by this game is that we can
write down strategy profiles for which their are non-trivial information
sets that are several moves away from the equilibrium path.
In a reasonably defined equilibrium, we would like I’s beliefs about

m’s decision (conditional on reaching this information set) to be some-
how consistent with player m’s strategy. Accordingly, we might con-
jecture that (i) if C runs then either m endorses and I exerts low effort
or (ii) m does not endorse and I exerts high effort or (iii) both m and
I randomize. As we shall see combining sequential rationality and a
stronger notion of consistency can avoid this pathology.
In this section we limit ourselves to finite games and present several

stricter equilibrium concepts. All of the concepts defined will involve
sequential rationality as defined in Definition 8.2. Where these con-
cepts differ is in the restrictions imposed on beliefs.
First we need a bit of notation. Given a finite game ΓEI a mixed

strategy profile σ(·) is a mapping that determines a lottery over avail-
able actions at each information set. For a finite game such a strategy
profile can be written as a vector (σ(1, 1), ...., σ(a, I)...) with generic
coordinate σ(a, I) denoting the probability that action a is played at
information set I. A completely mixed strategy profile selects every
action at every information set with positive probability. A pure strat-
egy is then a vector containing only 0’s and 1’s. A sequence of mixed
strategies {σ(·)n}∞n=1 is said to converge to a mixed strategy σ(·) for
each I, a σ(a, I)n converges to σ(a, I). The notion of sequential equi-
librium replaces weak consistency with a stronger condition.

Definition 8.6. Given a finite extensive form game with imper-
fectly observed actions, ΓEI a sequential equilibrium (SE) is a pair
(σ(·), b(·)) such that: (1) the strategy profile σ(·) is sequentially ra-
tional relative to the belief b(·), and (2) there exists some sequence of
completely mixed strategies{σ(·)n}∞n=1 and beliefs {b(·)n}∞n=1that con-
verge to σ(·), b(·) respectively and for some n0 if n > n0 b(·)n is weakly
consistent relative to the strategy profile σ(·)n.
To demonstrate how this concept refines our notion of PBE, we first

return to the game in Figure 8.10. Consider any completely mixed
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profile σn(·) where we will assume that every pure strategy must be
played with probability εn where εn → 0 as n → ∞. If this sequence
of mixed strategies is going to converge to the PBE in Figure 8.10, we
require σn(endorse, run) to be a mixed best response to σn(run) = εn
and σn(high effort, run) = 1 − εn. However, m’s expected utility
from endorse is therefore εn while its payoff to not endorse is 1− 2εn.
Therefore, since εn converges to 0, there must be some N such that for
all n > N , m prefers to choose σn(endorse, run) = εn → 0. Thus, the
equilibrium in Figure 8.10 is not the limit of these completely mixed
equilibria and is not a sequential equilibrium.
We can also see the restrictions that sequential equilibria place on

beliefs. Weak consistency requires that the beliefs about the media’s
decision correspond to the strategy, bn(endorse) = σn(endorse, run).
Accordingly for a sequence of completely mixed strategies that con-
verges to a profile playing not run and endorse if run with probability
1, b(·)n must converge to beliefs that put probability 1 on endorse.
Therefore, there are no sequences of completely mixed strategies and
weakly consistent beliefs that converge to the strategies and beliefs de-
picted in Figure 8.10. In fact it can be shown that every sequential
equilibrium involves strategies that are subgame perfect. The proof of
this result is left as an exercise.
While sequential equilibrium is an improvement over PBE, in many

applications the two concepts turn out to have equivalent equilibrium
sets. For example in the classic signaling games considered earlier the
concepts coincide. Fudenberg and Tirole (1991) have shown that

Proposition 8.9. (Fudenberg and Tirole 1991) If ΓEI has only 2
periods or every player has at most two types then the set of PBE and
SE coincide.

5.2. The Intuitive Criterion. While the concept of sequential
equilibrium can sometimes eliminate implausible PBE, it often contin-
ues to permit implausible out-of-equilibrium beliefs. To address these
problems, Kreps and Cho’s propose the intuitive criterion to further
restrict the equilibrium set in many signaling games.
Since we wish categorize certain off-the path beliefs as implausible,

Kreps and Cho postulate beliefs should be concentrated on those types
of senders who have the greatest incentive to defect. They illustrate
their concept with what has become known as the Beer and Quiche
game. We follow this tradition because this is the simplest possible
game upon which the concept can be demonstrated, but offer some
political embellishments rephrasing the interaction as a game between
Saddam Hussein and George Bush on the eve of the American invasion
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of Iraq. Consider a two-player signaling game in which the sender,
Hussein has two possible types. He can have weapons of mass destruc-
tion, θ = w or not, θ = ˜w. The receiver, Bush can either attack sb = a
or not sb = ˜a. Bush has no concerns about winning if he attacks, but
needs to justify the attack with the claim that Hussein has weapons
of mass destruction. Accordingly, he prefers to attack if w and he
prefers not to attack if ˜w. Prior to Bush’s decision, Hussein decides
whether to allow weapons inspections sh = y or sh = ˜y. However,
the result of a weapons inspection would not be realized before Bush’s
decision of whether to attack or not. We assume that regardless of
Bush’s decision type w suffers a cost of 1 from inspection as he is shown
to be in violation of UN resolutions. Type ˜w receives a benefit of 1
from inspection as he is publicly vindicated. Regardless of Hussein’s
type he would prefer not to be attacked, and in fact the cost of being
attacked is sufficiently large that Hussein of either type is willing to
make either decision regarding UN inspections to avoid attack. Bush
on the other hand does not care directly about the inspections, but he
prefers attacking as long as the probability of θ = w is sufficiently high
(greater than 1

2
). Figure 8.11 depicts the game.

Insert Figure 8.11
It is not difficult to see that there are pooling equilibria in which

weapons inspectors are allowed (sh = y) and there are pooling equilib-
ria in which they are not allowed (sh = ˜y). In any pooling equilibria,
Bush’s posterior must correspond to the prior. Thus if the prior prob-
ability w is sufficiently low, Bush will not attack. To support pooling
at sh = y, it is necessary that both Hussein types prefer y to ˜y. This
results in the incentive compatibility conditions

3 ≥ EUH(˜y, ˜w)

2 ≥ EUH(˜y, w)

Letting pr(a | ˜y) denote the probability that Bush attacks after ob-
serving ˜w, the above conditions require that we have

3 ≥ 0pr(a | ˜y) + 2(1− pr(a | ˜y))
2 ≥ 1pr(a | ˜y) + 3(1− pr(a | ˜y)).

This is true as long as pr(a | ˜y) ≥ 1
2
. In order for Bush to use a

strategy in which pr(a | ˜y) ≥ 1
2
his posterior belief about Hussein’s

type conditional on the off-the path action ˜y needs to satisfy pr(w |
˜y) ≥ 1

2
. This posterior is not pinned down by Bayes’ Rule. Recall

that the on-the-path pr(w | y) = 1
4
corresponds to the prior and is

pinned down in a pooling equilibrium. So we have shown that there is
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a PBE (and by Proposition 8.9 as SE) in which both types of Husseins
pool at y and Bush does not attack.
To support the other pooling equilibrium where both types of Hus-

sein select ˜y and Bush again does not attack, we need only specify
off-the-path beliefs pr(w | y) ≥ 1

2
. Following these beliefs, Bush at-

tacks with probability at least 1
2
and so both Hussein-types prefer to

select ˜y and avoid attack.
While they are both PBE and SE, Kreps and Cho argue that only

one of these pooling equilibria is reasonable. Consider the equilibria
in which both Hussein types select ˜y. This equilibria requires that
the off-the-path belief satisfies pr(ω | y) ≥ 1

2
. Is it reasonable for Bush

to believe that Hussein is more likely to have weapons if he allows
inspections than if he doesn’t? Recall that in this equilibrium θ = w
is getting his maximal possible payoff. No inspections and no attack
result in a payoff 3. However, the defection to y and not attack results
in a payoff of 2 for w. Such a deviation is not very desirable under the
assumption that the deviation will not trigger attack. If an attack were
triggered by y then the defection is even less attractive. On the other
hand consider the potential incentive for a deviation by a type ˜w. In
equilibrium he gets payoff 2. However if his defection did not result
in an attack he would get utility of 3 (and thus improve his situation).
Thus, it seems intuitive that if a defection were observed that it would
most likely be committed by ˜w. Kreps and Cho argue that Bush would
be foolish to interpret y as suggestive of w. Instead they imagine that
the only justification for such an off the path deviation is that a type
˜w Hussein might deviate to y and send the following justification.

Dear W:
Sorry for past squabbles with your old man. About

this recent disagreement, I know that you are expecting
me to choose ˜y and this doesn’t tell you anything—its a
pooling equilibrium after all (you remember pool tables
from Yale don’t you). But I am not going to do this,
because I actually don’t have any weapons and I want
to show this to the world, so I am going to make myself
even better off. Beside avoiding the tanks, special ops,
and media barrage when you decide not to attack, I’m
also going to allow weapons inspections in to show that
I have been well-behaved. You should trust that this
action indicates that I really have no weapons because if
I did have weapons and I expected you not to attack if I
didn’t allow the inspections (which is the equilibrium we
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are playing) then I would only hurt myself by letting in
the inspectors.

Sincerely

SH

Of course this type of communication is not modeled in standard
signalling games. The point is that given the Bush strategy, one type
can possibly gain from the off-the-path deviation, while the other type
can only lose. In such a setting, the off-the-path beliefs should be
concentrated on the type that stands to gain. Note that the y pooling
equilibria is immune from this criticism. The only type that stands to
possibly gain from choosing ˜y is w. So the beliefs justifying Bush’s
attack following ˜y are justified.
We now present the intuitive criterion in slightly a more rigorous

manner and so we require a bit more notation. Let Γs denote a simple
signaling game with two periods and two players. Player 1 has a
type space Θ and a message space M. Player 2 observes player 1’s
message m and selects an action from A. For simplicity assume that
all of these sets are finite. For the more complicated case of non-finite
sets, the following conditions can be modified but some technical issues
may be encountered. While player 1 knows her type, player 2 only
knows that 1’s type is drawn from some probability mass function f(·)
on Θ and player payoffs are given by utility functions us(m,a, θ) and
ur(m,a, θ). Accordingly, a mixed strategy profile is a message function
σs(θ) that selects a lottery onM for every θ and an an action function
σr(m) that selects an action for each possible message. By σs(m, θ) and
σs(a,m), we denote the probability that m is played by a sender with
type θ and the probability that a is played by an r that has observedm
respectively. An equilibrium (PBE or SE) also involves a belief µ(θ |
m).Given a signaling game and a sequential equilibrium to the game, let
U∗s (θ) denote expected utility to player 1 of type θ from the equilibrium
profile. Finally let ∆ denote the set of probability distributions on
Θ and let BRr(m) = ∪p(θ)∈∆{argmaxa∈A

P
ur(m,a, θ)p(θ)} denote

the set of actions by r that maximize the receiver’s expected utility for
some beliefs about θ. We say an action r is rationalizable if it is an
element of BRr(m).

Definition 8.7. An SE (σs(·), σs(·), F (· | ·)) satisfies the intuitive
criterion if for any message m such that

P
σr(m, θ)f(θ) = 0, the pos-

terior belief µ(θ | m) > 0 only if U∗s (θ) < maxa∈BRr(m) us(m, a, θ).
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In words, an intuitive equilibrium requires that out-of-equilibrium
beliefs put zero probability on types that could not gain from the ob-
served deviation under some expectation that the receiver would re-
spond to the deviation by playing a strategy from her set of best re-
sponses.
To further demonstrate the concept, we modify the entry deterrence

game considered above. Now instead of restricting the message space
to be {WC, ˜WC} we allow the incumbent to select a level sI ∈ R1+ at
a cost csI where c is either cw or cs depending on the incumbent’s type.
Let the value of office be 1 for the incumbent, so if in equilibrium she
accumulates s0 and wins with probability π (because of randomness in
the challenger’s decision and the randomness associated with election
in a contested race) her payoff is π − cs0. As you will see there are
pooling, partially pooling and separating equilibria to this game. It
can be shown however that there is exactly one intuitive equilibrium.
This equilibrium is a separating equilibrium. We leave the analysis
of this game as an exercise, and provide a solution in the back of the
book. Students are strongly encouraged to devote the time to work
through these two problems before looking at our solution.
The literature on refinements is quite large and refinements to the

intuitive criterion have appeared in applications. Commonly, models
with types spaces with more than two element require stronger re-
finements. This is because several types might stand to gain from a
defection for different best responses by the receiver. In such situa-
tions, stronger refinements such as universal divinity (Banks and Sobel
1992).6 Since universal divinity has been used in numerous political
applications, we present a definition and an example.

Definition 8.8. An SE (σs(·), σs(·), F (· | ·)) satisfies universal di-
vinity if for any message m such that

P
σr(m, θ)f(θ) = 0, the posterior

belief µ(θ | m) > 0 only if there exists an action a ∈ BRr(m) such that
U∗s (θ) < us(m,a, θ) and for every θ0 6= θ U∗s (θ

0) ≥ us(m, a, θ0)

In comparing the two refinements, universal divinity is more strin-
gent in the set of types that it allows the posteriors to place positive
probability. In the case of universal divinity, the posteriors can only
put weight on a type if there is rationalizable action that makes the de-
viation desirable for this type and not desirable for any other type. In-
formally, universal divinity requires that off the path beliefs put weight
only on the types “most likely” to deviate.

6We suggest students to seek out the original Cho and Krep and Banks and
Sobel pieces. In addition, Banks (1991) is an exemplary presentation of signaling
games and refinements in political science.
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To contrast the intuitive criterion and universal divinity, we con-
sider a version Michael Spence’s model of job signaling. We consider
an application to the question of political reform as a signal to gain
foreign investments or loan guarantees. Suppose a developing coun-
try has type θ ∈ {1, 2, 3} with θ measuring the nations potential to
successfully repay debts (higher numbers are better). Let π1 and π2
denote the probability of types 1 and 2 (with type 3 occurring with
probability 1−π1−π2). The country must select a level of observable
political reform r ∈ R1+. The pain associated with reform is dependent
on the nations type. After observing r the IMF determines a financial
package f ∈ R1+ for the nation. We assume that the receiver’s goal is
to match f with the nation’s θr. Payoffs are as follows, given type θ,
reform r and package f , the nation’s utility is f − 1

θ
r2.

We first consider the case of π1 + π2 = 1 (so there are just two
types of developing countries). In this case, there are pooling, partially
pooling and separating sequential equilibria. However, the intuitive
criterion selects a unique equilibrium. We sketch out the argument
here. Consider Figure 8.12 which depicts indifference contours over
pairs of messages and responses for senders of types 1 and 2. Since
all senders prefer more funds and fewer reforms, movements to the
northwest quadrant are desirable from their perspective.

Insert Figure 8.12

Consider a pooling (or partially pooling) equilibrium in which both
sender types are selecting the same level rp with positive probability.
After observing rp the receiver knows that the posterior probability
of θ < 2 is greater than 0 and thus in any sequential equilibrium the
package that corresponds with rp, f(rp), must be less than 2rp. We
show that there exists a message r0 > rp such that if f(r0) = 2r0

type 2 nations would prefer the deviation and type 1 nations would
not. In this case the intuitive criterion implies that beliefs must place
probability 1 on θ = 2 if r0 is chosen. Given these beliefs following r0

the package f(r0) = 2r0 is the unique sequentially rational package for
the receiver. In the notation of our definitions above we have

U∗r (2) = f(rp)− rp

2

ur(r
0, 2r0, 2) = 2r0 − r0

2
U∗r (1) = f(rp)− rp

ur(r
0, 2r0, 1) = 2r0 − r0
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Accordingly, U∗r (1) > ur(r
0, 2r0, 1) requires only f(rp) − rp > r0 while

U∗r (2) < ur(r
0, 2r0, 2) requires only f(rp)− rp

2
< 2r0− r0

2
or r0−rp

2
< 2r0−

f(rp). Both of these inequalities can be simultaneously satisfied. See
Figure 8.12 for the region of such values of r0. To recap, in a pooling or
partially pooling equilibrium in which both types play rp with positive
probability, the intuitive criterion requires that following the (possibly
off the path) message of r0 beliefs assign probability 1 to type 2. Thus if
r0 is played the financial package will be 2r0. The value r0 was chosen
so that type 2’s strictly prefer message r0 to rp meaning that type
2’s cannot put positive probability on the message rp contradicting
the assumption that there is an intuitive equilibrium in which both
types player rp with positive probability. Having ruled out all but
separating equilibria, we claim that the intuitive criterion selects a
unique separating equilibrium. We leave this as an exercise below.

Insert Figure 8.13

We now assume that θ = 3 occurs with probability 1−π1−π2 > 0.
The first question to address is whether the intuitive criterion still
eliminates all pooling or partially pooling equilibria. The answer is
no. To see this suppose that types 1 and 2 are both playing a message
rp with positive probability, and θ = 3 plays a pure strategy r3 > rp.
It can be shown that this happens in some sequential equilibrium. Our
argument before was that the intuitive criterion required that following
some reform r0 that is higher than rp posterior beliefs are concentrated
at the higher type. However, with the third type present this turns
out not to be the case. We can now satisfy the intuitive criterion with
posteriors putting weight θ = 3 following a reform r0 > rp. With such
beliefs, sequentially rational choices of f might lead θ = 1 to prefer the
deviation to the equilibrium payoff. More specifically, the requirement
that f(r0) ≤ 2r0 need no longer hold. Now it is just the case that
f(r0) ≤ 3r0 needs to hold. With f(r0) this big, type θ = 1 might be
willing to deviate with the expectation that a deviation will result in
f(r0). Accordingly in order for type θ = 2 to signal that it is not type
1, it needs to send a message at least as high as rmin as depicted in
Figure 8.13. However, for every level of r > rmin, there are possible
best responses f(r) that make type 2 worse than under equilibrium.
Notice that there is space between type 2’s indifference curve and the
line f = 2r. Since the intuitive criterion only requires that type 2
expect a response of f > 2r for an r greater than rmin, it cannot be
sure that the deviation is desirable.
However, if we test whether this partial pooling can happen in a

universally divine equilibria the answer is different. Again suppose that
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types 1 and 2 are both playing a message rp with positive probability,
and θ = 3 plays a pure strategy r3 > rp. Under universal divinity, a
message of r0 that is slightly larger than rp must result in a posterior
concentrated at θ = 2. To see this, note that for values of r to the
right of rp type 1’s indifference curve is above type 2’s. This means
that for pairs (r0, f(r0)) that lie between the two indifference curves, we
have U∗s (2) < us(r

0, f(r0), 2) and U∗s (1) > us(r
0, f(r0), 1). Moreover,

since type 3 is getting f = 3r, his utility is higher in equilibrium than
under the deviation. Accordingly, universal divinity requires that a
message of r0 result in beliefs concentrated at θ = 2 and thus sequential
rationality requires that f(r0) = 2r0, and so type 2 would gain from the
deviation. It is left as an exercise to show that there is exactly one
universally divine equilibrium in the game with 3 types.

6. Exercises

Exercise 8.1. Consider the game of Figure 8.7, with the payoff to
the path B,NR being (5,0) instead of (4,0). Characterize all of the
PBE (mixed and pure strategy) to the game.

Exercise 8.2. Consider the game of Figure 8.7, with the payoff to
the path ND being (w, 5) instead of (0, 5). Here w is an exogenous
parameter known to the agents that is ranging from [−2, 5]. For what
regions of this range are there PBE in which ND occurs with positive
probability. In other words for what subset of [−2, 5] are there PBE in
which ND is played.

Exercise 8.3. In the game depicted in Figure 8.8, show that there

is not a PBE with m(θ) =
½

b if θ = a
a if θ = b

.

Exercise 8.4. Find all of the PBE of the game depicted in Figure
8.14.

Insert Figure 8.14 here

Exercise 8.5. A Model of Political Repression

Suppose that in each of two periods, society must decide whether
to protest the policies of the state. The state may either acquiesce or
repress. Society gets 1 if the state acquiesces, −1 the state represses,
and 0 if it does not protest.
Suppose there are two types of states: Moderate and Hardline. The

moderate state (M) gets 0 if the protest does not take place, −2 if it
acquiesces, and −3 if it represses. The hardline (H) state gets 0 for no
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protest, −2 for repression, and −3 for acquiescing. Let p0 be the prior
probability that the state is M .

a. In the second period, what is the critical value p∗ such that
S protests if p1 ≥ p∗(where p1 is S’s updated belief that the
state is M)?

b. Is there a separating equilibrium with these strategies?

M : {acquiesce, acquiesce}
H : {repress, repress}
S : {protest, stay home if repressed in period1}

If so, what values of p0 does it hold?
c. Is there a pooling equilibrium in the first period with these
strategies?

M : {repress, acquiesce}
H : {repress, repress}
S : {protest, stay home if repressed in period1}

If so, what values of p0 does it hold? Is it consistent with the
intuitive criterion?

d. Is there a pooling equilibrium in the first period with these
strategies?

M : {repress, acquiesce}
H : {repress, repress}
S : {stayhome, stay home if repressed in period1}
If so, what values of p0 does it hold? Is it consistent with the
intuitive criterion?

e. Compute a semi-pooling equilibrium whereM represses in the
first period with probability q. For what values of p0 does S
protest?

Exercise 8.6. Show that there are no partial pooling equilibria in
open rule version of the Gilligan-Krehbiel model.

Exercise 8.7. Compute the other partial pooling equilibria for the
Warchest Game.

Exercise 8.8. Consider the open rule version of the Gilligan Kre-
hbiel model described above, but suppose that their are two committee
members with c > θ that observe the state and make simultaneous mes-
sages to the floor. Does a separating equilibrium exist. Now suppose
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that their are three such committee members does a separating equilib-
rium exist?

Exercise 8.9. Show that given a finite extensive form game if
σ(·), b(·) is constitutes a sequential equilibrium then σ(·) is subgame
perfect.

Exercise 8.10. Show that in a one sender, one receiver signaling
game if the senders type space has two elements the set of PBE and SE
coincide.

Exercise 8.11. Prove Proposition 8.9.

Exercise 8.12. Show that in the Hussein-Bush game the pooling
equilibria with y on the path does not violate the intuitive criterion.

Exercise 8.13. Can you modify the probability of w in Figure 8.11
to support the observed path of play ( ˜y and a) as a PBE?

Exercise 8.14. Characterize the levels of sI and entry lotteries
that are supportable in a PBE to the modified entry game with message
space R1+ ((note this question should be answered in the book))

Exercise 8.15. Characterize the unique intuitive equilibrium to the
modified entry game with message spaceR1+ ((note this question should
be answered in the book)).

Exercise 8.16. In the reform for loan guarantees game with 2 types
show that the unique intuitive equilibrium involves r(1) = argmax{r−
r2} = 1

2
and r(2) = argmax{r − 1

2
r2} = 1.

Exercise 8.17. In the reform for loan guarantees game with 3 types
show that the unique universally divine equilibrium involves r(1) =
argmax{r − r2} = 1

2
and r(2) = argmax{r − 1

2
r2} = 1 and r(3) =

argmax{r − 1
3
r2} = 3

2
.





CHAPTER 9

Repeated Games

Many important models in political game theory are based situa-
tions consisting of agents playing the same game repeatedly over time.
In many of these cases, the authors are interested in how certain social
practices like conventions, norms, cooperation, and trust are sustained
when actors may appear to have short run incentives to deviate from
the expected behaviors. Another significant application of “repeated”
is to understand how social dilemmas such as the Prisoner’s dilemma
can be solved without recourse to centralized authority (Taylor 1976).
The most interesting conceptual issue in such games is the extent

to which repetition creates the opportunity to sustain more behavior as
Nash equilibria than is possible in single-shot games. As we will see, in
general, the set of Nash equilibria is much larger in repeated games than
the corresponding static versions. This is because expectations about
the future can lead to playing strategies that would not be optimal in
a static context.
To generate some intuition as to how expectation about the future

can influence behavior, consider the following abstract normal form
game.

Table 9.1
1\2 L M R
T 8, 8 0, 0 1, 9
M 0, 0 5, 5∗ 0, 0
B 9, 1 0, 0 3, 3∗

Note that if this game is played only once there is only two Nash
equilibria: (M,M) and (B,R). Even though the strategy profile (T,L)
provides the highest aggregate payoffs, it is not an Nash equilibrium
since player 1 would defect to B and player 2 would would defect to
R. Now consider what happens if this game is played twice. Suppose
player 1 chooses the strategy, “play T in period 1 and playM in period
if player 2 plays L in period 1. Otherwise play B in period 2.” Further-
more, suppose that player 2 chooses the strategy “play L in period 1
and playM in period 2 if player 1 plays T in period 1. Otherwise play

199



200 9. REPEATED GAMES

R in period 2.” Note that this pair of strategies is a Nash equilibrium
where the “good“ outcome (T,L) is played in the first period. To see
this note if either player defects, her payoff 12 which is less than the
equilibrium utility of 13. In fact, these strategies not only constitute
a Nash equilibrium but the equilibrium is also subgame perfect. Since
(B,R) is an equilibrium of the one-shot game, it is an equilibrium to
all of the subgames that follow actions other than (T,L). Note that
(T,L) cannot be a Nash equilibrium to the second subgame.
By repeating the game the players can use a “norm” that if there

is cooperation in the first period, the good equilibrium will be played
in the second period. Otherwise, the bad equilibrium will be played.
A second important point is that repeating the game can only improve
the player’s average utility. Since playing (B,R) in both periods is also
a subgame perfect Nash equilibrium, repetition cannot lower average
utility below (3, 3). As we will see almost any set of payoffs can be
a Nash equilibrium if the game is long enough and the players care
enough about the future.

1. The Repeated Prisoner’s Dilemma

It is often argued that trade policy among nations is an example of
the Prisoner’s Dilemma played repeatedly over time. It is generally
thought that the world economy does better when all nations agree to
free trade, but that individual countries might do better by protecting
their domestic economy. Given this tension, the question arises as to
how to sustain free trade regimes. One answer is that free trade can
be supported as an equilibrium in a repeated game where trade wars
begin whenever a major country defects from the trade agreement.
To illustrate this argument, consider the following representation of a
trade policy dilemma between the US and the EU.

Table 9.2: Free Trade Game
US\EU Free Trade Protect
Free Trade 10, 10 1, 12
Protect 12, 1 4, 4

Obviously, if the game is just played once, the unique Nash equi-
librium is the strategy profile (Protect, Protect). Suppose that it is
played twice (ignoring the discounting of future payoffs), then the strat-
egy sets for each player are (where the period 2 strategies depend on
the strategy of the other player)
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FT1FT2FT2, FT1FT2P2, FT1P2FT2, FT1P2P2, P1FT2FT2, P1FT2P2,
P1P2FT2, P1P2P2

where FT1FT2P2 means “play FT in period 1 and play FT in period
2 if the other country plays FT in period 1 otherwise play P.”

Table 9.3: Two-Period Free Trade Game
US\EU FT1FT2FT2 FT1FT2P2 FT1P2FT2 FT1P2P2 P1FT2FT2 P1FT2P2 P1P2FT2 P1P2P2

FT1FT2FT2 20,20 20,20 11,22 11,22 11,22 11,22 2,24 2,24

FT1FT2P2 20,20 20,20 11,22 11,22 13,13 13,13 5,16 5,16

FT1P2FT2 22,11 22,11 14,14 14,14 11,22 11,22 2,24 2,24

FT1P2P2 22,11 22,11 14,14 14,14 13,13 13,13 5,16 5,16

P1FT2FT2 22,11 13,13 22,11 13,13 14,14 5,16 14,14 5,16

P1FT2P2 22,11 13,13 22,11 13,13 16,5 8,8 16,5 8,8

P1P2FT2 24,2 16,5 24,2 16,5 14,14 5,16 14,14 5,16

P1P2P2 24,2 16,5 24,2 16,5 16,5 8,8 16,5 8,8∗

Unlike our first example, repeated the game only once does not
effect behavior as (P1P2P2, P1P2P3) is the only Nash equilibrium. This
result can be generalized to any finite number of periods. In the
last period, each country will like to protect. Since this is known in
the penultimate period, each country will have an incentive to protect
in this period as well. This process unravels until each country is
protecting in every period.
The reason that we were able to induce some cooperation in our first

example was that the first period behavior helped coordinate between
multiple equilibrium in the second period. The good equilibrium was
used as a reward while the bad equilibrium was used as a punishment.
However, since the Prisoner’s Dilemma has but one Nash equilibrium,
it is impossible to encourage cooperation with the promise coordinating
on a good equilibrium in the future.
However, if the game lasts an infinite number of periods, this ceases

to be an issue. Now suppose that the “good equilibrium” is to free
trade in every period while the “bad equilibrium” is to protect in every
period. Since there is no last period, the good equilibrium does not
unravel as it did in the finite case. Thus, in every single period,
cooperation is sustained by the reward of the good equilibrium and the
sanction of the bad.
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2. The Grim Trigger Equilibrium

To see how infinite repetition eliminates the “last period” problem,
consider the following strategy in the infinite period trade game: “Play
free trade in every period until the other country protects, then pro-
tect forever.” This is known as the grim trigger strategy, because any
failure to cooperate leads to the non-cooperative equilibrium in all fu-
ture periods. If each country plays this strategy, both receive 10 in
every period. Assuming that both countries discount the future at a
common rate δ, the long-term utility of this strategy is 10

1−δ .
1 To show

that this strategy is a Nash equilibrium, we must show that neither
player is willing to defect. It is necessary and sufficient to show that
no player is willing to defect for one period. Because of each stage
game is identical, either a player will want to defect in every period
or in no period. Defection from this strategy gives the defector 12 in
the period of the defection. Since the other player will protect forever
following the defection, the defector’s best response is to protect for-
ever following the defection. Therefore, the defector gets 4 in every
period following the defection. The utility from defecting is therefore
12 + δ4

1−δ . Thus, the grim trigger strategies are a Nash equilibrium
to the repeated prisoners dilemma if and only if 10

1−δ ≥ 12 + δ4
1−δ or

δ ≥ 1
4
. So as long as the players are sufficiently patient (δ large), the

grim trigger strategy is a Nash equilibrium. We can also show that
the grim trigger equilibrium is subgame perfect. A proper subgame to
this game is also an infinitely repeated prisoner’s dilemma. Since the
grim trigger equilibrium is a Nash equilibrium for the whole game, it
must be an equilibrium in each of the subgames.
Now consider a generalized Prisoner’s Dilemma

Table 9.4: Generalized Prisoner’s Dilemma
1\2 Cooperate Don’t cooperate

Cooperate a, a d, c
Don’t cooperate c, d b, b

where c > a > b > d. Using exactly the same steps as above, the grim
trigger strategy is a SPNE if and only if a

1−δ ≥ c+ δb
1−δ or

δ ≥ c− a

c− b

1See chapter 3 for a discussion of time discounting and the calculation infinite
sums of dicounted utilities.
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Thus, we find that cooperation is harder to sustain (requires a higher
discount factor) when:

(1) c is large relative to a and b.
(2) a and b are roughly equal.

3. Tit-for-Tat Strategies

The grim trigger strategy is not the only SPNE to the infinitely
repeated prisoner’s dilemma which sustains the cooperative outcome.
Many authors find the grim trigger equilibrium unrealistic because it
predicts that cooperation disappears forever following a single defec-
tion. Therefore, it is not very robust to mistakes by the players. It
assumes that the player’s cannot renegotiate a return to the coopera-
tive phase which they would clearly have a incentive to do. However,
if we assume that players can engage in such renegotiation, cooper-
ation vanishes because the uncooperative equilibrium is no longer a
deterrent.
An alternative SPNE is based on “tit for tat” strategies of the

following form “cooperate until your opponent cheats. Then cheat
until your opponent cooperates, then cooperate.” Note that there are
two possible subgames:

(1) A sub-game where both players are expected to cooperate in
the next iteration. We call this the cooperation phase.

(2) A sub-game where the defector is supposed to cooperate and
the other player is supposed to punish the defector by not
cooperating in the next iteration. We call this the punishment
phase.

Consider the first subgame. Again the equilibrium utility is a
1−δ ,

but the utility from a defection is a bit more complicated. Defecting
gives a one -period utility of c. In the next period, the defector gets
d from cooperating and being punished by the other player. In third
period, the game returns to cooperation. Note that since we are intent
upon establishing the existence of a Nash equilibrium, we need only
check for one time deviations. Therefore, we assume that cooperation
lasts forever following the punishment phase. Thus, the total utility
is c+ δd+ δ2a+ δ3a+ ... = c+ δd+ δ2a

1−δ . Thus, a player will not defect

during this type of subgame if a
1−δ ≥ c+ δd+ δ2a

1−δ or

δ ≥ c− a

a− d

Now consider the second subgame. The equilibrium utility for the
previous defector d+ δa

1−δ which cooperating in every period while the
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other player punishes him in the first period. If a player defects from
this subgame, they get b in the current period, d in the next period,
and a after that. Thus, a player will not defect if d+ δa

1−δ ≥ b+δd+ δ2a
1−δ

or

δ ≥ b− d

a− d
Given these two results, we have established that if δ ≥ max

©
c−a
a−d ,

b−d
a−d
ª
.the“tit

for tat” strategies constitute a SPNĖ. Intuitively, we might expect tit-
for-tat strategies to sustain more cooperation than the grim-trigger if
the payoff of d were a sufficiently large deterrent against defecting in the
cooperation phase. However, this effect is counteracted by the fact that
if d is sufficiently bad, a defector has a stronger incentive to defect from
the punishment phase. In fact we can show thatmax

©
c−a
a−d ,

b−d
a−d
ª
≥ c−a

c−b
so that cooperation is always easier to sustain under the grim trigger
strategy than under tit-for-tat.2 However, note the following:

(1) The grim trigger strategy is not optimal when players may
make mistakes. Tit-for-tat may be better because the effect
of mistakes is not permanent.

(2) The grim trigger strategy is not renegotiation proof. Both
players could do better by renegotiating to leave the punish-
ment phase and return to the original equilibrium. However,
if both players foresee this possibility the punishment phase
will not be an effective deterrent. Tit-for-tat is renegotiation-
proof. The punisher gets higher utility in the punishment
phase and will not wish to renegotiate.

4. Intermediate Punishment Strategies

The grim trigger and tit-for-tat strategies represent just two of the
possible supergame strategies that may sustain the cooperative out-
come. We can generalize this class of strategies to include strategies
that involve punishment phases of intermediate length. Consider the
following strategies:

(1) Cooperate until your opponent defects. Then do not cooper-
ate for k periods. Return to cooperating after the punishment
phase ends.

(2) Cooperate until your opponent defects. Then do not cooper-
ate for k periods if your opponent cooperates. If your oppo-
nent does not cooperate at any point during this punishment
phase, begin a new punishment phase of k periods.

2See Axelrod (1984) for evidence that real-life players typically choose strategies
resembling tit-for-tat.
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Strategy 1 is similar to the grim trigger strategy in that a punish-
ment consists of a reversion to the strategy pair (don’t cooperate, don’t cooperate).
However, now the punishment phase is finite. The second strategy is
similar to tit-for-tat in that any defector is punished by cooperating
while the other player does not.
We consider strategy 1 first. Clearly there is no incentive to defect

during a punishment phase since mutual non-cooperation is a Nash
equilibrium. We need only consider defections from a cooperation
phase. Now the payoff from a single defection during a cooperative
phase consists of the one period gain from defecting, the discounted
utility of b for k periods, and the utility of getting a every period of
the end of the punishment phase.3 Thus, using the rules for sums
of discount factors we encountered in chapter (choice theory), we can
write this utility as c + δ−δk+1

1−δ b + δk+1

1−δ a Thus, sustaining cooperation
requires that a

¡
1− δk+1

¢
≥ (1− δ) c+

¡
δ − δk+1

¢
b. While we cannot

get a closed form for the critical value of δ, note that we can re-write
this expression as

δ >
c− a

c− b
+ δk+1

a− b

c− b

Note that the first term on the right side of the inequality is the critical
value for the grim trigger strategy while the second term is positive for
any finite k. Thus, not surprisingly, it is harder to sustain cooperation
with a finite punishment phase. However, in a model where players
may make mistakes, this equilibrium may be preferred to the grim
trigger strategy.4

Now we consider strategy 2. First lets consider a defection from
the cooperation phase. The payoffs from a defection consist of a one
period benefit c, a punishment payoff of d for k periods, and a return
top cooperative payoffs a at the end of the punishment. Summing
all of these up generates c + δ−δk+1

1−δ d + δk+1

1−δ a. Simple algebra reveals
that this payoff is lower than the payoff from defection in the tit-for-tat
equilibrium by δ2−δk+1

1−δ (a− d). Thus, increasing the length of the pun-
ishment phase decreases the incentive to defect from the cooperative
phase.
However, increasing k may not make such an equilibrium easier to

sustain as it reduces the incentive to comply in the punishment phase.
To see this, consider the payoffs from defecting from the punishment

3Again the logic of Nash equilibrium suggests we can ignore the possibility of
future defections.

4Like the grim trigger SPNE, this one is not renegotiation proof.
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phase. These payoffs consist of getting b for one period, d for k pe-
riods, and then returning to a or b + δ−δk+1

1−δ d + δk+1

1−δ a. The payoffs
from adhering to the equilibrium in the punishment phase depends on
which period of the punishment phase the game is in. Since we have
to verify compliance in each period, we need to ensure compliance in
the period where the payoff to compliance is lowest, the first period
of the punishment phase. Thus, the utility for complying with the
punishment in this period is 1−δ

k

1−δ d+
δk

1−δa. Thus, compliance with the
punishment requires

δ >

µ
b− d

a− d

¶ 1
k

This critical value is clearly diminishing in k. A SPNE in these strate-
gies requires that both conditions on δ be satisfied.

5. The Folk Theorem*

A common theme of our examples is that so long as the agents
are sufficiently patient outcomes that are not Nash equilibria in static
games can be supported as SPNE of infinitely repeated games. This
result generalizes significantly. In fact, any individually rational payoff
to an infinitely repeated game can be sustained as a SPNE if agents
are sufficiently patient. This important result has been well known for
so long that no one knows who derived it first. It has therefore been
afforded the status of a Folk theorem. In this section, we formally
prove a version of this result.
The primitives of a repeated game are a normal form stage game

Γ = hN,S, ui and vector of agent discount rates δ = (δ1, ..., δn). In
each period t ∈ {1, 2, 3, ...}, the agents play the normal form game Γ.
The game Γ is often called the stage game to distinguish it from the
repeated game. Before agent i selects sti ∈ Si, her strategy in period t
she observes the strategy profile st−1 played in period t−1. Moreover,
we maintain the assumption of perfect recall, meaning that sti can be
conditioned on the history ht−1 = (s1, ....., st−1) ∈ St−1 :=

Qt−1
j=1 S.

The null history is h0 = ∅. A pure strategy for player i is then a
sequence of mappings {sti(ht−1) : St−1 → Si}∞t=1 . A mixed strategy is a
sequence of mappings {σti(ht−1) : St−1 → ∆(Si)}∞t=1. Given a sequence
of lotteries over stage game profiles {σt}∞t=1 agent i’s expected utility
is given by EUi({σt}∞t=1) = (1− δi)

P∞
t=1 δ

t−1
i Eσtui(st) where Eσtui(st)

takes the expectation of ui(st) over the mixture σt. The multiplier
(1− δi) is included so that for a constant sequence σt, EUi({σt}∞t=1) =
ui(σ

t). We denote the repeated game induced by a stage game, by
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Γ∞ = hN,S, u, δi. Of course a repeated game is also an extensive form
game and our notions of NE and SPNE are well defined in the repeated
game.
We now focus on repeated games generated by finite normal form

stage games. Given Nash’s theorem, we know that every such stage
game has at least one mixed strategy NE. It is not surprising then that
every such repeated game has as a mixed strategy SPNE the infinite
repetition of the stage game mixed strategy NE.

Proposition 9.1. If σ∗ is a SPNE of the stage game then the
repeated game profile σti(h

t−1) = σ∗i for every (h
t−1) for every t for

every i is a SPNE of the repeated game.

An interesting feature of repeated games is that the set of SPNE is
usually very large. The class of results termed ”Folk theorems” serve
to quantify the set of equilibrium payoffs that are supportable in an
equilibrium. We prove a particularly useful and simple Folk theorem.
We first need several definitions.

Definition 9.1. The payoff vector v ∈ Rn is individually ratio-
nal if

vi ≥ min
s−i∈S−i

½
max
si∈Si

ui(si, s−i)

¾
.

The value mins−i∈S−i {maxsi∈Si ui(si, s−i)} is the minimum stage
game utility that player i can attain when she plays a best response.
This value is identified by letting the players −i select s−i so as to
minimize the utility to i of playing a best response to s−i.

Definition 9.2. The payoff vector v ∈ Rn is feasible if there is
some sequence of pure strategy stage game profiles {st}∞t=1 such that for
each i ∈ N, EUi({st}∞t=1) = vi.

Proposition 9.2. For every feasible and individually rational pay-
off vector v ∈ Rn there is an n-tuple of discount rates δ s.t. the payoff
vector v occurs in a NE of the repeated game with the discount rates δ.

Proof. Assume that v is feasible and individually rational. Let
{svt} be a strategy profile that calls for playing the strategy that attains
the payoff vector v as long as no one has previously deviated from this
strategy or more than two players have deviated, and plays the strategy
{spt = argmins−i∈S−i {maxsi∈Si ui(si, s−i)}} which punishes the unique
player that deviated in all subsequent periods. At any period t the
payoff to i of playing {svt} is vi and the payoff to deviating is bounded
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by

(1− δti)vi + δti(1− δi)max
s∈S

ui(s) + δt+1i min
s−i∈S−i

½
max
si∈Si

ui(si, s−i)

¾
.

This value is less than vi if

δi ≥
maxs∈S ui(s)− vi

maxs∈S ui(s)−mins−i∈S−i {maxsi∈Si ui(si, s−i)}
.

Since maxs∈S ui(s) ≥ vi ≥ mins−i∈S−i {maxsi∈Si ui(si, s−i)} the right
hand side is strictly less than 1. Thus as long as this condition is
satisfied for each i ∈ N the conjectured strategy profile is a NE to the
repeated game.¥ ¤
The equilibria used in the proof need not be SPNE as the punish-

ment might be very costly to impose. We can quantify a set of payoff
vectors supportable in SPNE to the repeated game using reversion to
stage game NE strategies as the punishment.

Proposition 9.3. If v ∈ Rn is a feasible payoff vector for which
there is some mixed strategy stage game NE which yields the payoff
vector v0 s.t. v0i < vi for every i ∈ N then there is a SPNE in the
repeated game which yields the payoff vector v.

6. Application: Interethnic Cooperation

Fearon and Laitin (1996) use infinitely repeated games to under-
stand how inter-ethnic cooperation might be sustained. Consider two
groups A andB both with n (even) members. In each period t, players
are randomly matched to play the following Prisoner’s dilemma.

Table 5: Inter-Ethic Cooperation Game
1/2 Cooperate Defect
Cooperate 1,1 −β, a
Defect α,−β 0,0

where α > 1, β > 0, and α−β
2

< 1. Further suppose that each of the
members has a common discount factor δ ∈ (0, 1) . In each period m
members of each group are selected to be paired with members of the
other group while the remaining n−m are matched with members of
their own group. This random matching process suggests that each
player will have a p = m

n
probability of being matched in an “out-group”

member.
To capture the dynamics of intergroup and intragroup interaction,

Laitin and Fearon assume that within groups the entire history of play
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is observed by all members of the group. However, the history of play
for members of the other group are not observed. Thus, in their model
inter-ethnic cooperation is hard to sustain because those who defect in
inter-group interactions cannot be individually singled out for punish-
ment by members of the other group. Nevertheless, Fearon and Laitin
argue that cooperation can be sustained even in the absence of these
direct sanctions. They consider two such equilibria to this game. The
first is what they call the spiral equilibrium. In this equilibrium, coop-
eration is supported within groups by kin period punishments against
individual defectors. However, intergroup cooperation is sustained by
the threat of group specific punishment phases of kout periods. During
these punishment phases, all members of a given group are punished
by the other group if any has defected in an inter-group interaction.
The second equilibrium is the in group policing equilibrium in which
there is no cross-group punishments but each group punishes its own
for defections against the other group. Below we analyze the in-group
policing equilibrium and refer the reader to the original article for the
discussion of the spiral equilibrium.

6.1. The In-group Policing Equilibrium. The strategy for the
in-group policing equilibrium follows.

Play C in all out-group pairings. For in-group pairings,
always play C with any partner not in a punishment
phase, and D in a punishment phase. A player enters
or restarts a punishment phase for kgp periods by defect-
ing against the out-group member or against an in-group
member

We will focus on group A as the proof extends identically to the
strategies of group B. Let st = (k1, k2, ...kn) be the state of the system
where ki is the number of periods remaining in the punishment period
for player i at the beginning of period t. If ki = 0, we say that player
i is a cooperator and that player i is a defector if ki > 0. For a given
state st and any integer l > 0, let nt+l be the number of members of
group A who will be cooperators in period t + l, assuming that each
plays the equilibrium strategy from period t to period t+ l. Therefore,
qt+l =

nt+l
n−1 is the probability of facing a cooperator in an in-group

interaction.
To demonstrate that these strategies constitute a subgame perfect

Nash equilibrium, we need to verify the following conditions.

(1) A cooperator i has no incentive to
(a) to defect against any out-group player
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(b) to defect against an in-group
(c) to cooperate with any in-group defector

2. a defector i has no incentive to
(a) to defect against an out-group player
(b) to defect against an in-group cooperator
(c) to cooperate against an in-group defector

Clearly, conditions 1(c) and 2(c) will be always satisfied since those
deviations lower utility and the current period without affecting strate-
gies of any other player (these deviations do not trigger punishments).
Further note that 1(a) and 1(b) reflect the same trade-offs since both
deviations generate a payoff of α in period t followed by kgp periods
of punishment. Thus, we need only establish that there will be no
incentive to deviate in cases 1(a), 2(a), and 2(b).
We can write the utility for cooperation against an in-group coop-

erator or out-group member as

1 +
∞X
l=1

δi(p+ (1− p)(qt+l + (1− qt+l)α)

while the utility from deviations 1(a) and 1(b) is
(9.1)

α+
kgpX
l=1

δl(p+(1−p)(−qt+lβ+(1−qt+l)0)+
∞X

l=kgp+1

δi(p+(1−p)(qt+l+(1−qt+l)α)

The net utility of cooperating is therefore

(9.2) 1− α+
kgpX
l=1

δl((1− p)(qt+l (1 + β) + (1− qt+l)α)

To show that deviations 1(a) and 1(b) will not occur, we need equation
9.2 to be positive for all states and the resulting sequences of qt+l. If
α > 1+β, equation 9.2 is minimized by qt+l = 1 for l = 1, kgp. This is
the path following st = (0, 0, ..., 0). The net utility is positive following
this state if and only if

(9.3) δk
gp ≤ 1− (1− δ) (α− 1)

δ(1− p) (1 + β)

Now consider the case where 1 + β > α. The the net utility would be
minimized at qt+l = 0 for l = 1, kgp. However, given the definition of q
this is an infeasible sequence since all players are assumed to cooperate
in their punishment phases and terminate their punishments after kgp

periods. Thus, the minimizing sequence is one where all players defect
in time t − 1 and return to cooperation status in period t + kgp − 1.
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The sequence of q is therefore qt+l = 0 for l = 1, kgp− 1 and qt+kgp = 1.
Thus, we now require (after some algebra) that

(9.4)

¡
δ − δk

gp¢
1− δ

α

(1 + β)
+ δk

gp ≥ α− 1
(1− p) (1 + β)

Now we need to check to see whether a defector at time t will wish to
make deviation 2(a). Suppose that a defector with ki is paired against
an out-group player. The utility of cooperating is

1+

ki−1X
l=1

δl(p+(1−p)(−qt+lβ+(1−qt+l)0)+
∞X
l=ki

δi(p+(1−p)(qt+l+(1−qt+l)α)

while the utility of the deviation is given by equation 9.1. Thus, the
defector will cooperate with an out-group member so long as

kgpX
l=ki

δi((1− p)(qt+l(1 + β) + (1− qt+l)α) ≥ α− 1

The right side of this inequality is minimized when ki = kgp so that we
require

δk
gp

((1− p)(qt+kgp(1 + β) + (1− qt+kgp+l)α) ≥ α− 1
Since all players play according to the equilibrium strategy, qt+kgp = 1
for all st. Therefore, we require

(9.5) δk
gp ≥ α− 1

(1− p)(1 + β)

Finally, we need to check deviation 2(b). So assume a defector with
ki = 1 is paired against as cooperator. The utility of cooperating is

−β+
ki−1X
l=1

δl(p+(1−p)(−qt+lβ+(1−qt+l)0)+
∞X
l=ki

δi(p+(1−p)(qt+l+(1−qt+l)α)

Again the utility for defecting is given by
kgpX
l=1

δl(p+(1−p)(−qt+lβ+(1−qt+l)0)+
∞X

l=kgp+1

δi(p+(1−p)(qt+l+(1−qt+l)α)

so that the net utility of cooperating is
kgpP
l=ki

δi((1−p)(qt+l(1+β)+ (1−

qt+l)α) − β. Using the same argument as we did on 2(a), our SPNE
requires

(9.6) δk
gp ≥ β

(1− p)(1 + β)
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Now we have a full set of equilibrium conditions. First, consider
the case of α > 1 + β, we require 9.3,9.5,and 9.6. First, note that
equation 9.6 holds whenever 9.5 does. Less obviously, we can show
that equation 9.5 implies equation 9.3. We can re-write 9.3 as

(9.7) δ

µ
δk

gp − α− 1
(1− p)(1 + β)

¶
≤ δ − (α− 1)

(1− p) (1 + β)

Note that if equation 9.5 holds both sides of equation 9.7 are positive
and the right side must be larger since 1 > δ > δk

gp

. Thus, 9.5
is necessary and sufficient for the in-group policing strategies to be a
SPNE if α > 1 + β.
Now consider the case α < β + 1 where we require equations 9.4,

9.5,and 9.6 to hold, but now 9.6 implies 9.5. Also, if equation 9.6
holds, note that

δk
gp ≥ β

(1− p)(1 + β)
>

α− 1
(1− p)(1 + β)

>
α− 1

(1− p)(1 + β)
−
¡
δ − δk

gp¢
1− δ

α

(1 + β)

Therefore, equation 9.6 implies equation 9.4 so that 9.6 is necessary
and sufficient for the in-group punishments to constitute a SPNE. We
have established the following proposition.

Proposition 9.4. The in-group punishment strategy with kgp pe-
riod punishments is a SPNE if and only if δk

gp ≥ min
n

α−1
(1−p)(1+β) ,

β
(1−p)(1+β)

o
Note some important features of the SPNE. First, if δk

gp ≥ min
n

α−1
(1−p)(1+β) ,

β
(1−p)(1+β)

o
holds for kgp > 1, it must hold for kgp = 1. Thus, no more than a
single period of punishment is required to sustain the equilibrium. In
fact, longer punishments are counterproductive since they lower the
incentives of defectors to cooperate in order to end the punishments.
A second important point about the SPNE is that they can only be

sustained if p, the probability of out-group interactions is low enough.
Since the SPNE requires min

n
α−1

(1−p)(1+β) ,
β

(1−p)(1+β)

o
≤ 1, it can never

exist if p > min
n

1
1+β

, 1− α−1
1+β

o
. When the probability of interaction

with the out-group is large, the probability of punishment for any devia-
tion is low since punishments are meted out only from in-group players.
This has the somewhat counterintuitive implication that inter-ethnic
cooperation is impeded by too much inter-ethnic interaction. Fearon
and Laitin argue that this result provides an endogenous rationale for
groups wanting to preserve ethnic boundaries.
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7. Application: Trade Wars

Consider a generalization of the free trade game as presented in
Table 9.6.

Table 9.6: Generalized Free Trade Game
1\2 Free Trade Protection

Free Trade Θ,Θ 0,Θ+ ρ
Protection Θ+ ρ, 0 ρ, ρ

We now interpret Θ as the value to each country of the other coun-
tries open markets and ρ as each countries gain from protecting its own
markets. From before, we know that Free Trade can be supported by
the grim trigger strategies if an only if Θ

1−δ ≥ Θ+ ρ+ δρ
1−δ or

δ ≥ ρ

Θ
Supporting this equilibrium depends crucially on each country per-
fectly observing the policies of the other countries. This may not
be a very realistic assumption since countries may use invisible trade
barriers. Also since trade flows will vary with a number of market
conditions unrelated to trade policy, each country will not know for
certain whether the fall in trade is due to malfeasance by the other
side.
To model these issues, we assume that each country cannot directly

observe the policies of the other country, but observes only the value
of its trade Θ which is random variable. To keep things as simple as
possible, we let Θi = θ > 0 with probability π when country j engages
in free trade and 0 with probability 1 − π. When country j protects
its markets, Θi = 0 with probability 1. Consequently, country i knows
for sure if j chooses free trade if Θi = θ but if uncertain of j’s policies
when Θi = 0. We will assume that πθ > ρ so that each county prefers
the free trade outcome to mutual protectionism in expectation.5

Clearly, just as before, protection is a SPNE to this game, but we
would like to see if there are equilibria which will sustain some level of
free trade. Obviously, such an equilibrium will require some form of
punishment when Θi = 0 is observed even though it cannot be verified
with certainty that country j actually defected.
First, consider a grim trigger strategy in which country i protects

forever whenever it observes Θi = 0 . Thus, the payoffs to free trade
in the first period are πθ + (1− π)0. Free trade continues to the next

5This model is based loosely on Green and Porter’s (1984) model of imperfect
collusion and price wars in economic cartels.
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period so long as Θ1 = Θ2 = θ which occurs with probability π2. Thus,
country i’s payoffs in the second period are π2(πθ + (1 − π)0) + (1 −
π2)ρ = π3θ+(1−π2)ρ. Continuing the same logic to period 3, we get
π5θ+(1−π4)ρ. Thus, the infinite discounted sum of utilities from free
trade are

V FT = πθ + δ
¡
π3θ + (1− π2)ρ

¢
+ δ2

¡
π5θ + (1− π4)ρ

¢
+ ...

V FT = πθ(1 + δπ2 + δ2π4 + ...) + δ(1− π2)ρ+ δ2(1− π4)ρ+ ...

V FT =
πθ − δπ2ρ

1− δπ2
+

δρ

1− δ

The utility from defecting to protection is more straightforward. The
one period payoff is πθ+ ρ while the future payoff is δρ

1−δ so that V
P =

πθ+ ρ
1−δ Thus, country i will choose free trade if and only if V

FT ≥ V P

or
δ >

ρ

π3θ
For comparison, note that if policies were observable, a SPNE in grim
trigger strategies would exist so long as δ > ρ

πθ
. Thus, the grim

trigger strategy is significantly more difficult to sustain when policies
are unobservable. In fact, if ρ > π3θ, grim trigger strategies would not
constitute a SPNE for any value of δ. The grim trigger strategy is also
very costly in the sense that infinite punishments can be generated by
variation in Θ, independent of policy.
So now we will follow Green and Porter (1984) and consider finite

trigger strategies. Now if either country observes Θ = 0, a trade war
begins in which both countries protect their markets for k ≥ 1 periods.
We know check conditions under which free trade is the optimal policy
if there is no trade war going on. 6 Let V k

i be the value of the payoffs
for country i for a k period trade war. It is easy to see that

V k
i =

(1− δk)ρ

1− δ

Let V FT be the payoff beginning a period in which the countries are in
a free trade phase. Therefore,

V FT = π
¡
θ + πδV FT

¢
+
¡
1− π2

¢
δ
¡
V k
i + δkV FT

¢
Thus, the equilibrium payoff to free trading is

V FT =
πθ + (1− π2) δV k

i

1− π2δ − (1− π2)δk+1

6Since mutual protection is a Nash equilibrium, we do not need to check the
optimality of protecting during a trade war.
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We can compute the value of a deviation as V P

V P = πθ + ρ+ δ
¡
V k
i + δkV FT

¢
An equilibrium requires that V FT ≥ V P or

(9.8)
δ − δk+1

1− δk+1
>

ρ

π3θ

The left side of this expression is increasing in k so let kmin(δ) be the
smaller integer such that the inequality holds for a given δ. Thus, we
have established the following proposition.

Proposition 9.5. If δ > ρ
π3θ

and k ≥ kmin(δ), the following strate-
gies is a SPNE.

(1) Begin the game, free trading.
(2) Free trade until Θi = 0 for either country.
(3) Following a period in which Θi = 0, protect for k periods.
(4) After k periods, return to free trade.

Note that a SPNE can be supported with trade wars of any length
greater that kmin(δ). However, if we assume that the countries can
coordinate on the optimal duration of trade wars, the model provides
a theory of their duration. Intuitively, since trade wars are costly,
the countries should coordinate on the minimal length war sustaining
cooperation, kmin(δ). This intuition can be verify by checking that
V FT is strictly decreasing in k so long as πθ > ρ. Thus, we can derive
empirical predictions by examining equation 9.8. Recall that the left
side is increasing in k, this implies that kmin(δ) is increasing in the value
of protectionism and decreasing in the value of free trade. Clearly this
makes sense. Trade wars should be longer when the incentive problems
are more severe. We can also see that the duration of trade conflict is
decreasing π. This is a very counter-intuitive result. Suppose that we
interpreted 1−π as the volatility of trade flows (the probability of low
trade during a free trade regime). This interpretation suggests that
trade volatility increases the duration of trade wars. This is necessary
to keep countries from enacting barriers and blaming the results on
natural volatility. However, in equilibrium, the countries never protect
outside trade wars so that they know with certainty that Θi = 0 was
caused by natural volatility. Yet they must engage in costly, length
trade wars to ensure that barriers are not erected.

8. Exercises

Exercise 9.1. Assume that there are three groups with the follow-
ing preferences over three policies.
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A B C
x z y
y x z
z y x

We will be analyzing this as a repeated game where in each period
groups may make a counter proposal to the status quo. For example,
suppose that the status quo is x then both B and C wish to propose z
which passes an becomes the new status quo. In the next period A and
C wish to propose y which passes. Assume that each group discounts
the future by δ.

a. What is each group’s utility from the infinite cycle (starting
at x) of policies that results?

b. Now suppose that A and B decide to form a political party to
implement policy x forever. Find a critical value δ∗ such that
if δ > δ∗ there is a subgame perfect Nash equilibrium where
A and B vote for x in every period, C proposes z, and if A or
B ever defects a policy cycle starts.

Exercise 9.2. Prove Proposition 1.

Exercise 9.3. Prove Proposition 3.

Exercise 9.4. Find conditions for the existence of the Spiral SPNE
to the Fearon and Laitin’s model. This equilibrium is based on the
following strategies:

In in-group pairings, always play C with cooperator, and
always play D against a defector, regardless of ones sta-
tus. A player enters or restarts the in-group punishment
phase for kin periods by defecting against a cooperator.
In out-group pairings, playC if neither group is in an out-
group punishments phase. Otherwise play, D. A group
enters the out-group punishment phase for koutperiods if
any member defects in a cross-group pairing when nei-
ther group is in the out-group punishment phase.

Exercise 9.5. Consider the model of trade wars. Construct the
following “probabilistic grim trigger SPNE.” Instead of reverting to
protectionism forever the first time Θi = 0 is observed, assume that
country i plays a mixed strategy and protects forever with probability µ.



CHAPTER 10

Bargaining Theory

If political science is the study of “who gets what, what, when and
how” then bargaining theory lies at its foundation.1 Legislators and
executives bargain over new legislation. States bargain to reach new
international agreements and to settle crises. Political parties bargain
over coalition governments. And so on.
Not surprisingly given its importance, the application of game the-

oretic models of bargaining to study political processes has been a very
active area of research. These models have focused on two sets of
issues. The first are the questions of distribution — “who wins” and
“who loses.” Does the president get his preferred legislation? Which
country gets to control the disputed region? Which parties received
government portfolios? The second important question concerns the
efficiency of political bargaining. Does the bargaining process itself
consume resources or fail to reach outcomes that make everyone better
off? Does legislative bargaining end in gridlock or a veto even though
there are policy compromises that all prefer? Do international dis-
putes end in costly militarized conflicts and wars? Why does it take
so long to form new coalition governments?
In this chapter, we review some of the most important bargaining

models and their application to political science.

1. The Nash Bargaining Solution

One of the earliest attempts to model bargaining was the framework
developed by John Nash. His approach was axiomatic in that he stipu-
lated a number of features that should characterize the outcome of any
bargaining situation. Before discussing his axiomatic requirements,
we describe his “solution” to the bargaining problem Our discussion
closely mirrors that of Muthoo (1999).
Suppose that two players A and B are negotiating over the allo-

cation of X units of some resource. We assume that X is infinitely
divisible so that the feasible allocations are all xA and xB such that
xA + xB ≤ X. Each player receives utility based on their allocations,

1See Lasswell (1936).

217
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UA(xA) and UB(xB). We assume that Ui is strictly increasing and
concave for both players i = A,B. In the event that no agreement
is reached, each player receives a default utility, disagreement value or
outside option of ui > ui(0). Finally to ensure that the bargaining
problem is non-trivial, we assume that there exists at least one alloca-
tion (xA, xB) such that Ui(xi) > ui and xA + xB ≤ X. This ensures
that there is feasible allocation that both players prefer to their dis-
agreement values.
In analyzing Nash’s solution to this problem, it is useful convert it

into one of allocations of utilities (uA, uB) rather than one of alloca-
tions of X. Therefore, we define the feasible utility allocations as the
set Ω = {(uA, uB) : uA(xA) = uA, uA(xB) = uB, and xA + xB ≤ X}.
Given our assumptions about the utility functions, the boundary of
this feasible set can be represented as a locus of points such as the
one in Figure 10.1. We define this locus as the function g(uA) =
UB(X − U−1A (uA)). Muthoo (1999) provides a proof that g is both
decreasing and concave in uA. To simplify our exposition, we assume
that it is twice-differentiable.
Now we can state Nash’s solution to the bargaining problem. Based

on the axioms we discuss below, his solution is the utility allocation
(uA, uB) ∈ Ω that maximizes

(uA − uA) (uB − uB)

subject to uA ≥ uA and uB ≥ uB

The requirement that uA ≥ uA and uB ≥ uB is illustrated by the dotted
lines in Figure 10.1. Thus, the constraint set is g(uA) on the range
[uA, g

−1 (uB)]. Since g is concave and decreasing, the feasible set is
convex. It is easy to see that the Nash product (uA − uA) (uB − uB)
is quasi-concave in both uA and uB. Thus, we can represent its level
curves in the region that the product in positive as the heavy dotted
lines in Figure 10.1.

Insert Figure 10.1 Here
Thus, there is a unique Nash bargaining solution at the tangency

of g and the iso-product curves. Mathematically, the solution to the
constrained optimization problem is given by

−g0(uA) =
uB − uB
uA − uA

uB = g(uA)

Before moving to a general results about the Nash bargaining solution,
it is useful to consider some special cases. First, assume that X = 1
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and ui(xi) = xi. The Nash Bargaining solution for this model is

uA = xA =
1 + uA − uB

2
and uB = xB =

1− uA + uB
2

It is easy to see two important features of the solution. First, each
player does better when disagreement provides it with a higher utility
and worse when their opponent has a better outside option. Second,
if each player has an equally valuable outside option, the resources are
split evenly. Another way to interpret Nash’s solution is to note that
the bargainers insist upon their disagreement values and equally split
the surplus 1− uA − uB which gives each a utility of ui +

1−uA−uB
2

.
Now we turn to the general case. First, we can state the Nash

bargaining solution in terms of shares.

Proposition 10.1. The Nash bargaining shares are given by the
solution to

UA(xA)− uA
U 0
A(xA)

=
UB(X − xA)− uB

U 0
B(X − xA)

Proof. Direct application of previous result using the fact that
g0(uA) = −U−1

0

A (X − U−1A (uA)) · U 0
B(X − U−1A (uA)) = −U 0B(X−U

−1
A (uA))

U
0
A(X−U

−1
A (uA))

and U−1A (uA) = xA. ¤
A direct implication of this result is that if the disagreement values

and utility functions are the same for both players, the Nash bargaining
shares are xA = xB =

1
2
X. Finally, we show that given our assumptions

about g payoffs increase in one’s own disagreement value and decline
in the opponent’s.

Proposition 10.2. Assume that g is twice-differentiable, then let
∂ui
∂ui

> 0 and ∂uj
∂ui

< 0 for i 6= j.

Proof. Since g is twice differentiable, we can use implicit differen-
tiation to the solution g(uA)−uB

uA−uA
+ g0(uA) = 0. Since the second order

condition is satisfied i.e. g0(uA)(uA−uB)−(uA−uB)
(uA−uA)

2 + g”(uA) < 0, the result

follows from −1
uA−uA

< 0, g(uA)−uB
(uA−uA)

2 > 0, and g0(uA) < 0. ¤

1.1. Application: Risk Aversion and the Nash Bargain-
ing Solution. Intuitively, risk is an important component of bargain-
ing. Bargainers always have to contend with the possibility that an
agreement will not be reached and they will be left with their outside
options. Also we should expect that if a player makes a more aggres-
sive demand, she increases the probability that the negotiations will
collapse. Consequently, it seems natural to think that bargainers who
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are more willing to tolerate risk should do better because they are will-
ing to make tougher demands and more aggressive reject offers. While
the Nash bargaining model, “black boxes” the negotiation process, the
solution is consistent with this intuition.
To see this, assume that each player has a utility function given by

Ui(xi) = xαii where 0 < αi < 1, disagreement values ui = 0, and X = 1.
The different values of α capture the players risk aversion, the lower α
the greater the risk aversion.2 It is easiest to compute the equilibrium
shares using the formula from Proposition 10.1. The solution is

xA =
αA

αA + αB
and xB =

αB

αA + αB

These results imply that each bargainer’s share is decreasing in their
own risk aversion and increasing in the risk aversion of their opponent.
This effect is consistent with our intuition that bargainers who are risk-
acceptant enough to take tough positions (i.e. increase the likelihood
of disagreement) should receive larger allocations.

1.2. Nash’s Axioms. In this section we outline the axioms that
underlie Nash’s bargaining solution. Informally, the axioms are in-
tended to encapsulate the following principals.

(1) The bargainers are expected utility maximizers.
(2) Bargaining should be efficient. The players should fully al-

locate all of the available resources and no player should do
worse that their disagreement value.

(3) The allocation should depend only on the player’s preferences
and disagreement values.

(4) The bargaining solution should no be effected by eliminating
from consideration allocations other than the solution.

To formalize this axioms, recall that Ω is the set of feasible util-
ity applications (uA, uB) that can be reached through some alloca-
tion of X. We now define the set of Pareto optimal allocations as
Ωe = {ω ∈ Ω : uA ≥ uA and g(uA) ≥ uB}. We can define a generic
bargaining situation as a pair (Ω, u) where u is the vector of disagree-
ment values. We denote the set of all bargaining games as Σ and the
bargaining solution as a correspondence F : Σ⇒ R2. We let Fi denote
the utility allocated to agent i.
The following axioms form the basis of Nash’s solution.

2A standard measure of risk aversion is −u00

u0 . For these utility functions,

−u00

u0 = −
α(α−1)xa−2

αxα−1 = (1−α)
x .
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Axiom 10.1. Invariance to equivalent utility representations: Let
U 0
i = αiUi+βi and u

0
i = αiui+βi for αi > 0 and define Ω0 accordingly.

Then Fi (Ω
0, u0) = αiFi (Ω, u) + βi for i = A,B.

Affine transformations of utility functions and disagreement utilities
should not alter the bargaining outcomes. Since the utility allocations
are adjusted by the same transformations as the utility functions, it
is easy to show that the resource allocations xi = F−1i (Ω, u) and x0i =
F−1i (Ω0, u0) for i = A,B. As we know saw in chapter 3, this axiom
implies that the players are expected utility maximizers.

Axiom 10.2. Pareto efficiency: If F (Σ) = (uA, uB), then there are
no other allocations (u0A, u

0
B) ∈ Ω such that u0i > ui for some i, u0j ≥ uj

for j 6= i, and u0i ≥ ui for all i.

The Pareto axiom holds that the bargainers should not be able to
improve upon the bargaining solution by choosing an allocation that
makes one of the bargainers better off without reducing the utility of
the other.

Axiom 10.3. Symmetry: Let uA = uB and assume that (u1, u2) ∈ Ω
if and only if (u2, u1) ∈ Ω. Then FA(Ω, u) = FB(Ω, u).

The basic idea of this axiom is that if neither player is advantaged
by having a better disagreement outcome or a utility level unreach-
able by her opponent, then the bargainers should get the same utility
allocations.

Axiom 10.4. Independence of Irrelevant Alternatives. Consider
two bargaining situations (Ω, u) and (Ω0, u) such that Ω0 ⊂ Ω and
F (Ω, u) ⊂ Ω0. Then F (Ω, u) = F (Ω0, u)

The intuition behind the IIA axiom is that, holding the disagree-
ment points constant, a smaller feasible set of allocations should only
change the bargaining solution if it makes the original allocation infea-
sible.
From our analysis of the Nash bargaining solution in the previous

section, it is clear that it satisfies all of these axioms. However, the
next proposition establishes that it is the only solution which satisfies
all four axioms.

Proposition 10.3. A bargaining solution F : Σ ⇒ R2 satisfies
axioms 1-4 if and only if it is the Nash bargaining solution.

Proof. see Muthoo (1999). ¤
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2. Non-cooperative Bargaining

While it does make a number of reasonable empirical predictions,
the Nash bargaining solution is best interpreted as a normative argu-
ment about what bargaining outcomes should look like rather than a
positive theory about how actual bargaining will take place. In this
section, we turn to non-cooperative game theoretic models which de-
duce behavior of bargainers under different extensive forms.
The starting point for the application of non-cooperative game the-

ory to bargaining is the model of Rubinstein (1982). Suppose that
two players are trying to decide how to divide $1. The players will take
turns making offers so that player 1 proposes in periods 0, 2, 4, etc. and
player 2 makes proposals in the other periods. The game continues
(possibly infinitely) until a proposal is accepted by the other player.
In each period that she is the proposer, player 1 can make an offer

(x1, x2) where x1 is player 1’s share and x2 is player 2’s share where
x1 + x2 ≤ 1. If player 2 accepts, the game ends and the dollar is
divided accordingly. If player 2 rejects, then she gets to make an offer
(x1, x2) and the game continues if player 1 rejects. To simply matters,
we assume that both players have linear utility functions u1 = x1 and
u2 = x2. Each player has a discount factor δi so that players value a
proposal of (x1, x2) t periods in the future as (δ

t
1x1, δ

t
2x2).

Just as in the bargaining game we encountered in chapter 7, there
are lots of Nash equilibria to this game. For example, consider the
strategies “Player 1 demands x1 = 1 and refuses all other offers, while
player 2 always offers x1 = 1 and accepts any offer”. However, this
equilibrium is not subgame perfect. If player 2 rejected player 1’s first
offer, and offered x1 > δ1 player 1 should accept because the best it
can get is the whole dollar next period. So we will focus on subgame
perfect Nash equilibrium.

2.1. Subgame Perfect Equilibria. Rubinstein shows that there
is a unique SPNE to this game based on playing the following strategies
in every period:

Player 1 proposes
³

1−δ2
1−δ1δ2 ,

δ2(1−δ1)
1−δ1δ2

´
and accept player 2’s offer if and

only if x1 ≥ δ1(1−δ2)
1−δ1δ2 .

Player 2 proposes
³
δ1(1−δ2)
1−δ1δ2 ,

1−δ1
1−δ1δ2

´
and accept player 1’s offer if and

only if x2 ≥ δ2(1−δ1)
1−δ1δ2 .

We begin by simply verifying that these strategies are in fact a
SPNE. First we check whether player 1 has an incentive to defect in
any subgame. Consider a subgame beginning with a proposal by player
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1(i.e. an even period). In the equilibrium, player 1 proposes the split
( 1−δ2
1−δ1δ2 ,

δ2(1−δ1)
1−δ1δ2 ) which is accepted by player 2. Clearly, player 1 cannot

gain by lowering x1 as it will be accepted but she gets a lower share.
If player 1 raises x1, then she must lower x2 so that the proposal is
feasible. However, any x2 <

δ2(1−δ1)
1−δ1δ2 will be rejected. Following such

a rejection, player 2 proposes x1 =
δ1(1−δ2)
1−δ1δ2 which player 1 accepts.

Thus, player 1’s utility of this defection is δ21(1−δ2)
1−δ1δ2 which is less than

her equilibrium utility of 1−δ2
1−δ1δ2 since δ1 < 1.

Now consider whether player 1 will defect when player 2 is the
proposer (i.e. an odd period). Player 2 proposes ( δ1(1−δ2)

1−δ1δ2 ,
1−δ1
1−δ1δ2 ).

Note that accepting and rejecting the offer lead to the same utility as
the best that player one can do is have x = 1−δ2

1−δ1δ2 accepted one period
later.
Showing that player 2 will not defect is entirely similar.

2.2. Computing the Equilibrium. The problem with the pre-
ceding proof is that it does not give much of a sense of how the result
is derived. Now we consider a more constructive proof. Let v1 and
v2 be the utilities of player 1 and 2 for subgames in which they are the
proposer. For example, if player makes a proposal x1 that is accepted
v1 = x1. If player 1’s proposal is rejected, v1 is the discounted values
of the maximum of what player 2 offers and what it gets by rejecting
and proposing in his next turn. Given that the postulated strategies
are the same in every period, these values are independent of t. We
will call these continuation values since they also reflect the utility of
rejecting a proposal and moving to the next subgame. Consider a
subgame where player 1 is the proposer. She must offer player 2 at
least δ2v2. Thus, x1 = 1− δ2v2. Since this offer is accepted v1 = x1 so
that v1 = 1−δ2v2. Consider a subgame where player 2 is the proposer.
She must offer at least δ1v1 so that v2 = 1− δ1v1.
Solving these two equations leads to

v1 =
1− δ2
1− δ1δ2

v2 =
1− δ1
1− δ1δ2

These continuation values are consistent with the strategies presented
in the last section.

2.3. Uniqueness. While we have shown that Rubinstein’s equi-
librium is a subgame perfect Nash equilibrium, we have not ruled out
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the possibility that there are others. We now show that this equilib-
rium is the unique SPNE by proving that v1 and v2 above are the only
continuation values consistent with a SPNE. Suppose there are more
than one SPNE. Let vi and vi be player i’s highest and lowest SPNE
continuation values for any subgame where player i is the proposer.
Let wi and wi be player i’s highest and lowest SPNE continuation
values for any subgame where player i is not the proposer.
When player 1 makes a proposal, she never need to offer more

than δ2v2 since player 2 cannot expect more than v2 by rejecting and
making her own proposal in the next round. Thus, her lowest possible
continuation value must satisfy v1 ≥ 1 − δ2v2. By the symmetric
argument, v2 ≥ 1 − δ1v1. Since we now know that the other player
will never offer anything greater than δivi then we know that wi ≤ δivi.
Now consider player 1’s strategy. When she proposes the best she

can do is either to pay δ2v2 or trigger a rejection to get δ1w1. Thus, we
know that her continuation value satisfies v1 ≤ max {1− δ2v2, δ1w1} ≤
max

©
1− δ2v2, δ

2
1v1
ª
= 1− δ2v2. Similarly, v2 ≤ 1− δ1v1. Thus, we

have the following four inequalities

v1 ≥ 1− δ2v2

v2 ≥ 1− δ1v1

v2 ≤ 1− δ1v1
v1 ≤ 1− δ2v2

Using the first and third inequalities, we see that v1 ≥ 1− δ2(1− δ1v1)
which implies that v1 ≥ 1−δ2

1−δ1δ2 . Similarly, using the second and fourth,
we get v1 ≤ 1−δ2(1−δ1v1) or v1 ≤ 1−δ2

1−δ1δ2 . This implies that v1 = v1 =
1−δ2
1−δ1δ2 . Similarly, we can derive that v2 = v2 =

1−δ1
1−δ1δ2 . Thus, there

is a single continuation value for each player. Thus, the postulated
strategies are the only SPNE.

2.4. Implications. The model suggests a very simple path of play.
In period zero, player 1 proposes ( 1−δ2

1−δ1δ2 ,
δ2(1−δ1)
1−δ1δ2 ), player 2 accepts, and

the game ends. Since the whole dollar is allocated and there is no delay,
the subgame perfect Nash equilibrium is efficient. It is easy to see that
the SPNE has the following implications.

(1) If both players have the same discount factor, there is a first
mover advantage since 1−δ

1−δ2 >
δ(1−δ)
1−δ2 . Intuitively, since player

2 discounts the future, player 1 only need offer her a fraction of
what she would get for being the proposer next period. Since
both players are identical, this means that player 2 is getting
only a fraction of what player 1 gets.
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(2) Both players shares are increasing in their discount factors and
declining in their opponent’s. It pays to be patient. When
player 2’s discount factor is high, player one has to offer her
more to secure immediate agreement. Conversely, when player
1’s discount factor is high, player 2 will have to offer him more
to reach agreement in the event that player 2 gets to make an
offer. Thus, rejecting player 1s offer is less valuable for player
2 suggesting that player 1 gets to keep more in the first period.

(3) Let δ1 = δ2 = δ, the both players shares converge to 1
2
as

δ converges to 1. As both players become perfectly patient,
they are less willing to accept offers that are less than what
they can get as the proposer next period. In the limit, they
demand exactly what they expect to get next period which
is satisfied by the proposal

¡
1
2
, 1
2

¢
. One way to think about

the discount rates converging to one is to consider a situation
in which offers and counter- offers can be made very quickly
so that rejecting an offer creates only infinitessimal delay. In
such a case, the equilibrium is equal division and corresponds
exactly to the Nash bargaining solution for this problem.

2.5. Asymmetric Disagreement Values. In the canonical Ru-
binstein game, the players get 0 in any period for which there is no
agreement. We now modify the game in two ways. First, we assume
that the players receive an allocation of (d1, d2) in each period prior
to an agreement where d1 + d2 < 1. After an agreement, (x∗1, x

∗
2)

is reached, the bargainers receive this allocation in every period over
an infinite horizon. This contrasts with the model of the last sec-
tion where the allocation is “consumed immediately.”3 To keep things
simple, we assume that δ1 = δ2 = δ. Thus, the utilities of reaching

agreement (x∗1, x
∗
2) in period t are

µ
(1−δt−1)d1+δtx∗1

1−δ ,
(1−δt−1)d2+δtx∗2

1−δ

¶
.4

Let vi be the continuation values for periods in which i proposes.
If an agreement (x∗1, x

∗
2) is reached in such a period, vi =

x∗i
1−δ . Consider

player 2’s decision to accept or reject an offer of x2. If she accepts, she

3This modification rules out strategies where the bargainers delay infinitely in
the hopes that the discounted sum of di exceeds the one-period agreement. We can
easily adjust the original model to correspond to the assumption that the agreement
is over a flow of utilities rather than one-shot consumption. We would simply use
the original model and assume that the players were allocating 1

1−δ .
4We assume that any agreement results in the same allocation in each period.

However, since the players are risk neutral, there might be agreements to random
allocations that generate the same payoffs.
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gets a value of x2
1−δ whereas if she rejects she gets d2 in the current period

and a continuation value v2 in the next. Thus, she will accept so long
as x2 > (1− δ) (d2 + δv2) . Now consider player 1’s choice. If he makes
the minimal acceptable offer x2 = (1− δ) (d2 + δv2), his continuation
value is v1 =

1−(1−δ)(d2+δv2)
1−δ = 1

1−δ − d2− δv2. Similarly, assuming that
player 2 wished to secure an agreement with her proposals we require
v2 =

1
1−δ − d1 − δv1. The solution to these two equations is given by

v1 =
1− d2 + δd1

1− δ2
=

d1
1− δ

+
1− d1 − d2

1− δ2

v2 =
1− d1 + δd2

1− δ2
=

d2
1− δ

+
1− d1 − d2

1− δ2

To show that these are in fact equilibrium continuation values, we must
show that each player prefers to make their equilibrium proposal rather
than defect and get their disagreement value for an additional period.
Thus, we require v1 > d1 (1 + δ) + δ2v1 or v1 > d1

1−δ which is easily
verified. Similarly, our equilibrium requires that v2 > d2

1−δ which is
also satisfied. The techniques of Section 2.3 can easily be generalized
to show that this is the unique SPNE.
This equilibrium has a number of qualitative similarities to the

Nash bargaining solution. Note that each player’s continuation value
increases in her disagreement value and decreases in their opponent’s.
This equilibrium also has a surplus-splitting interpretation. Note that
each player’s continuation value has two components. The first is di

1−δ
which is the utility each player can guarantee herself in the absence
of any agreement. The second component 1−d1−d2

1−δ2 corresponds to the
equilibrium continuation value in a game to split 1− d1− d2 when the
players have outside option values of 0. Thus, a useful interpretation
of this equilibrium is that both players take what they are entitled and
bargain over the rest.

3. Majority Rule Bargaining Under Closed Rule

A key feature of the Rubinstein model is that unanimous consent
is required to reach an agreement on the allocation. This rules out a
number of important political settings where only a simple or super-
majority is required for agreement. Baron and Ferejohn (1989) have
extended Rubinstein’s model to simple majority rule.
Suppose that there areN (odd) players bargaining and any proposal

requires n = (N + 1)/2 votes. Instead of assuming alternating offers,
Baron and Ferejohn consider a bargaining protocol with a Random
Recognition Rule. According to this protocol, in each period, every
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player has an equal probability (1/N) of being chosen to be the pro-
poser. In this section, we focus on bargaining under closed rule where
the proposer makes a take-it-leave-it offer for the current legislative
session. The proposer in each period makes an offer (x1, x2, . . . , xN)
such that xi is the share for player i and we require

P
xi ≤ 1. If

this proposal is rejected, the session ends, discounting occurs, and a
new proposer is chosen at the beginning of the next session. In a
later section, we consider open rule bargaining where proposals can be
amended within the current session. To keep things simple, we assume
that each player has the same discount factor δ.
This game has lots of subgame perfect equilibria. In fact for largeN

and δ, there is a SPNE that can support any division of the dollar. This
is due to the fact that if the players are patient enough, they can design
punishment strategies to guarantee $0 to any defector. However, these
strategies require that each player know the whole history (possibly
infinite) of the game so as to know which actions are consistent with
the prescribed punishment. Thus, following Baron and Ferejohn, we
will analyze only stationary equilibria. A stationary equilibrium to
this game is one in which:

(1) A proposer proposes the same division every time she is recog-
nized regardless of the history of the game.

(2) Voters vote only on the basis of the current proposal and ex-
pectations about future proposals. Because of assumption 1,
future proposals will have the same distribution of outcomes
in each period.

These two assumptions imply that the game essentially starts over
in every period. Therefore, the continuation value of each player is
exactly the expected utility of the game. Let vi be the continuation
value for player i. We will focus on symmetric equilibria so that vi = v
for all i. Finally, we will focus only on equilibria in which voters do not
choose weakly dominated strategies in the voting stage. Therefore, a
voter will accept any proposal that provides at least as much as the
discounted continuation value. Therefore, any voter who gets xi ≥ δv
will vote in favor of the proposal while any voter who receives less than
δv will vote against.
Give these voting strategies, a proposer knows that she must pro-

pose δv to n− 1 other players and 0 to the rest. Let z be the amount
that the proposer keeps so that

z = 1− (n− 1)δv
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We will assume (although we can show that it must be true), that
the proposer chooses her coalition partners randomly. Now we can
compute v. Since the continuation value is just the expected value of
the game starting next period, it is simply z times the probability of
being chosen as proposer 1

N
, δv times the probability of being included

in the winning coalition n−1
N
, and 0 times the remaining probability.

Thus,

v =
z

N
+

n− 1
N

δv.

Substituting for z we obtain

v =
1

N
.

Thus, the continuation value is just a proportional share of the dollar.
Since v is also the expected utility of the game, this result implies that
bargaining is efficient in the sense that the sum of player utilities is
maximized. As the reader will discover in the exercises, this efficiency
result may not hold if voters are risk-averse.
Finally, given our solution for v, we can compute the proposer’s

share:

z = 1− δ
n− 1
N

= 1− δ
N − 1
2N

.

To ensure that the proposer will prefer to make an acceptable proposal,
we must check that z > δv, otherwise a proposer would prefer punt and
wait for the next period. This condition is easily verified.
Among the important implications of the model is its predictions

about proposal power. First, note that proposal power is increasing
in N . When N increases, the proposer has more potential coalition
partners to play off of one another. This increases the competition for
inclusion in the winning coalition and drives down what the proposer
must pay. Secondly, proposal power is decreasing in δ. When δ is
higher, the voters are more willing to vote down proposals and wait for
a chance to propose themselves. Thus, the proposer must be relatively
more generous to secure agreement.

3.1. Supermajority Rule. We can also easily extend the model
to capture situations where more that a simple majority is required for
passage of the bill. Now assume that k > n votes are required. If is
easy to see that the proposer’s share is now

z = 1− (k − 1)δv
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and the continuation values are now given by

v =
z

N
+

k − 1
N

δv

Simple algebra reveals that once again v = 1
N
. This is not terribly

surprising given that the supermajority rule preserves the same sym-
metry we found in the majority rule game. However, the proposers
equilibrium share is now lowered to z = 1 − δ k−1

N
. Thus, the pri-

mary consequence of supermajority rules is to mitigate the proposer’s
advantage.

3.2. Asymmetric Proposal Power. A limitation of the preced-
ing model is that it assumes that all legislators have the same prob-
ability of being recognized to make the proposal. This assumption
would ignore real world legislative institutions such as committees and
parties which may affect the probability that an individual legislator
gets to make a proposal.
To show how the model generalizes, suppose that the members are

divided into two parties A and B. Party A has N −m > n members
so that it is the majority. Each member of A has a proposal power
p > 1/N . Alternatively, there are m members of B who have proposal
power q < 1/N . For consistency, we require that (N −m)p+mq = 1.
Again we will assume symmetry so that every legislator with the

same recognition probability has plays the same strategies and therefore
has the same continuation value. The members of the two parties have
continuation values vA and vB, respectively. We conjecture for now
(and prove later) that vA > vB. Given these continuation values,
a member of party A will vote for any proposal that provides her at
least δvA and a member of party B will vote for a proposal giving at
least δvB. Given these strategies and the assumption that vA > vB, a
proposer from party A will give δvB to the m members of party B and
δvA to n−m− 1 members of party A. Thus,

zA = 1− (n−m− 1)δvA −mδvB

A member of B will give positive allocations to m − 1 members of B
and n−m members of A so that

zB = 1− (n−m)δvA − (m− 1)δvB
Note that zA > zB. We can now compute vA and vB

vA = pzA + p(n−m− 1)δvA + qm(n−m)δvA/(N −m)

vB = qzB + (1− q)δvB
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Thus, we have 4 equations with 4 unknowns. It is straightforward
to solve, but its messy. So we will consider a simple example. Let
N = 3,m = 1. Note that q = 1−2p < 1/3. Therefore, the equilibrium
conditions are the following:

zA = 1− δvB

zB = 1− δvA

vA = pzA + qδvA/2

vB = qzB + (1− q)δvB.

After some tedious algebra, we find that

vA =
(1− q)(1− δ)

2 + qδ − 2δ

vB =
q(2− δ)

2 + qδ − 2δ .

We still need to check our assumption that vA ≥ vB. This occurs when

q <
1− δ

3− 2δ ≤
1

3
.

Since this upper bound is always less than 1/3 when δ > 0, the asym-
metry in proposal power must be substantial to give an advantage to
party A. The reason is that its greater proposal power makes members
of A unattractive coalition partners. Thus, the likelihood of being the
proposer must be large enough to offset this effect. However, it is easy
to show that that vA is decreasing and vB is increasing in q.
To complete our analysis, we need to consider what happens when

1−δ
3−2δ < q ≤ 1

3
. We can rule out vB > vA as this would imply that the

member of B is never in a coalition with the proposer. Thus,

vB = qzB = q(1− δvA)

vA = pzA + (1− p)δvA = p(1− δvA) + (1− p)δvA.

This leads to vA =
(1−q)
2(1−δq) and vB =

q(2−δ−δq)
2(1−δq) . Note that if vB > vA

only if q ≥ 1+2δ
3−2δ ≥

1
3
which violates our original assumption about q.

Thus, the only possible outcome for 1−δ
3−2δ < q ≤ 1

3
is vA = vB. To

support this equilibrium, proposers from A must choose a mixed strat-
egy that randomizes between formed a coalition with the remaining
member of A and the member of B. We leave computation of the
equilibrium mixed strategy to an exercise.
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3.3. Asymmetric Veto Powers. Another institutional variation
in legislative institutions is that certain players are privileged with the
ability to block legislation such as the president, an upper chamber,
or a court. In this section, we provide a simple example of how to
incorporate vetoes into the Baron-Ferejohn model.5 Now suppose that
one member of our three person legislature has an absolute veto power
in that she must approve every proposal. Let party B have the veto
player. To keep things simple, we return to the case of equal proposal
powers.
Since B has an absolute veto, any proposer must include B in her

coalition so that

zA = 1− δvB

zB = 1− δvA

Computing the continuation values:

vA =
1

3
zA + δ

1

3
vA

vB =
1

3
zB + δ

2

3
vB

Thus, we can solve for vA =
3(1−δ)
δ2−9δ+9 and vB = 3−2δ

δ2−9δ+9 . Note that
vA < vB so long as δ > 0.

3.4. The Baron-Ferejohn Model under Open Rule. In the
preceding sections, we have focused exclusively on models where pro-
posals cannot be amended within the current legislative session. We
now show how the model can be extended to capture the possibility
that proposals can be amended before a final passage vote. We now
assume that following each proposal a member is selected at random
from the remaining N − 1 legislators. The selected legislator has two
choices. First, she may call the question and bring about a final pas-
sage vote on the previous proposal. Alternatively, she may make a
new offer or amendment. The amendment is paired against the cur-
rent offer. The winner of this vote is the proposal on the floor at the
beginning of the next session. In the next session, a new legislator is
chosen to either amend or call the question.
Now a legislative proposer has two considerations. First, just as

before, a simple majority must receive their discounted continuation
values in order to support the proposal on final passage. Secondly, the
proposer must craft a proposal for which deters others from amending.

5This variation of the Baron-Ferejohn game was developed in McCarty
(2000a,2000b).
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This can be accomplished by allocating sufficient resources such that
the next proposer prefers to move the initial proposal rather than have
her own proposal on the floor at the beginning of the next session.
To keep things simple, we will focus again on N = 3. First, we

consider a scenario where the proposer keeps z, provides 1−z
2
to both

other legislators, and each legislator moves the question. To solve for
the optimal z, define v2i (z) as the continuation value of beginning a
session with a proposal giving z to player i and 1−z

2
to the other two

legislators. Since we are focusing on symmetric equilibria, we can
suppress the subscript i. Thus, v2(z) is expected utility of this strategy
of the first proposer and that of any proposer who successfully amends
a proposal.
Given this definition, a proposer must give each legislator at least

δv2(z) to induce them to call the question Otherwise, she would
defect to a proposal giving herself z for the next period. Therefore,
the equilibrium requires that 1−z

2
≥ δv2(z). So long as this condition

holds, the proposer gets z with probability 1 so that v2(z) = z. Thus,
the proposer will choose to maximize z such that 1−z

2
≥ δv2(z). This

leads to a solution of

v2(z) = z =
1

1 + 2δ

While the proposer can secure z = 1
1+2δ

with certainty, it may prefer
to secure the support of only one legislator and risk the defeat of their
proposal if the other is selected to make an amendment. So now assume
that the proposer keeps z, gives 1 − z to some other legislator, and 0
to the third legislator. The legislator who receives 1 − z moves the
question if selected. The legislator who receives 0 offers an amendment
giving z to herself, 0 to the original proposer, and 1 − z to the other
legislator. Such an amendment carries with the votes of the legislators
receiving positive allocation in the amended proposal.
To compute the optimal z, we need to consider two values. Let

v1i (z) be the value to legislator i of beginning the period with a proposal
giving z to i and 1− z and 0 to the others. Similarly, let v1i (0) be the
value to i of the game starting from a proposal that gives her 0 and
z and 1 − z to the others. Again due to symmetry we can drop the
subscripts.
First, we compute v(z). With probability 1

2
, the proposal is moved

and approved giving the proposer z. However, with probability 1
2
,

the proposal is amended so that the original proposer gets 0 in the
proposal in play at the beginning of the next session. Therefore,v1(z) =
1
2
z + 1

2
δv1(0). Now consider the value of starting the period with 0.
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With probability 1
2
, the proposal is moved and passed leading to a

payoff of 0. However with probability 1
2
, the member is selected and

can amend the proposal so that she gets z in the standing proposal at
the beginning of the next session. Therefore, v1(0) = 1

2
δv1(z). Putting

these two values together, we get v1(z) = 1
2
z + 1

4
δ2v1(z) or

v1(z) =
2z

4− δ2

Finally, we have to insure that the legislator receiving 1− z prefers to
move the question rather than amend. This requires that 1−z ≥ δv1(z)
or z ≤ 1− δv1(z). Therefore, the proposer will choose z to maximize
v1(z) subject to this constraint. The solution is z = 4−δ2

4+2δ−δ2which
leads to a continuation value of

v1(z) =
2

4 + 2δ − δ2

To determine which strategy the proposer will choose, we simply need
to compare v1(z) and v2(z). Straightforward algebra shows that
v1(z) > v2(z) when δ > δ∗ ≡

√
3 − 1. Intuitively, when players

are patient and value the future, it is very expensive to inhibit amend-
ments from both legislators. Therefore, the proposer prefers to buy
off only one member and take its chances with an amendment.
There are two interesting features of the open rule model. First,

it is possible that coalition are greater than minimum winning. This
occurs when δ < δ∗ so that the proposer spreads resources sufficiently
to deter all amendments. Secondly, there can be equilibrium delay
in agreement. This occurs when δ > δ∗ and the proposer gives 0 to
one member. If that member is then selected, they make a successful
amendment which precludes agreement in the first session.
It is useful to compare the equilibrium allocations from the open

rule with those for the closed rule. The literature has paid particular
attention to the proposer’s share.6 Recall that for N = 3, the pro-
poser keeps 3−δ

3
. This share is always greater than v2(z) and greater

than v1(z) when δ > δ∗. Thus, the open rule lowers the proposer’s
advantage. However, proposal power can also be mitigated by the use
of supermajority rules. Consider the case where k = N = 3. The
proposer’s share is 3−2δ

3
which is always lower than v1(z). Thus, when

δ > δ∗, the unanimity rule lowers proposal power below that of the
open majority rule without incurring costly delay.

6This is not only an important equity consideration. In models of allocating
the benefits of costly projects, institutions which limit the proposer’s share reduce
the incentive to pass inefficient projects (Baron 1992, McCarty 2000b, Primo 2004).
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4. Bargaining with Incomplete Information

In all of the bargaining models that we have seen so far all of the
agents know the disagreement or continuation values of their oppo-
nents. Consequently, they know with certainty which offers will be
accepted and rejected.7 This assumption is obviously problematic
in many political contexts. A legislature doesn’t know whether an
executive will sign a particular bill, states do not know whether the
peace terms will be accepted or if the opponent will prefer to continue
fighting, and so on. In this section, we provide a bare bones model
of bargaining with incomplete information. We then elaborate the
model with examples from executive-legislative bargaining and crisis
bargaining in international relations.

4.1. A Basic Model. Consider the setup we used for the Nash
bargaining problem where two players are negotiating over the division
of X. However, now there is uncertainty about player A’s disagree-
ment value. With probability π, uA = 0 and with probability 1 − π
uA = d > 0. We will refer to uA = 0 as the “weak” type and uA = d
as the “strong” type. To keep things as simple as possible, we assume
that player B makes a take-it-or- leave it offer to A of (uA, uB) ∈ Ω. If
A accepts, the offer is implemented. However, if A rejects, the payoffs
are (uA, uB).
Clearly, A will only accept an offer that gives her uA ≥ uA. How-

ever, since B does not know the value of uA she does not know how
much utility to transfer to A to secure her agreement. If she offers
less than A’s disagreement value, A will reject leading to (uA, uB). Let
P (uA|uA) be the probability that A will accept uA when her disagree-
ment value is uA. Therefore, we can write B’s expected utility function
as a function of her offer

EUB(uA) = [πP (uA|0) + (1− π)P (uA|d)] g(uA)+[1− πP (uA|0)− (1− π)P (uA|d)]uB
Since P (uA|uA) = 1 if uA ≥ uA and 0 otherwise, we can re-write B’s
utility as

EUB(uA) =

½
πg(uA) + (1− π)uB if d > uA ≥ 0

g(uA) if uA ≥ d

Given that g(uA) is decreasing in uA, the only possible solutions are
uA = d or uA = 0. We will call uA = 0 the aggressive offer and uA = d

7In the open rule Baron-Ferejohn game, the uncertainty is about which player
will be selected to offer an amednment, but not whether a particular player prefers
an amendment to the proposal.
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the accommodating offer. B will choose the aggressive offer if and
only if πg(0) + (1− π)uB > g(d)

π >
g(d)− uB
g(0)− uB

While very simple, the model makes a number of sensible predictions.
First, B is more likely to make the “aggressive offer” of uA = 0 when

• the probability that A is the weak type is high.
• her disagreement value uB is good
• the utility difference between the aggressive and accommodat-
ing offers, g(0)− g(d), is large.

Given the assumptions of one-sided incomplete information and a
single take-it-or-leave-it offer, this model is very limited. However,
rather than generalize this abstract model, we will review a number of
political science applications which relax these assumptions.

5. Application: Veto Bargaining

In Chapter 7, we studied the application of the Romer-Rosenthal
agenda setting model to the presidential veto. While this complete
information model of the presidential veto provides an excellent tool
for studying veto power, it cannot provide a basis for studying vetoes,
for the obvious reason that it predicts vetoes will not occur. We now
turn to a simple model for studying vetoes, rather than veto power. In
this model, vetoes do occur. This simple incomplete information model
in turn provides the foundation for building more complex models of
veto bargaining that incorporate reputation, learning, and dynamics.8

If one wants to explain the fact that vetoes occur, one must dis-
pense with at least one of the assumptions underlying the basic model.
While the model presented in Chapter 7 has a number of very re-
strictive assumptions, few of them are actually consequential in the
prediction of no vetoes. One important exception is the assumption
that C has complete information about the preferences of P and O.
When there is such uncertainty, vetoes may occur because the legisla-
ture overestimates its ability to extract concessions from the president
or the override pivot.
Relaxing the assumption of complete information has been the

starting point for most of the recent work on veto bargaining (Matthews
1989, McCarty 1997, and Cameron 2000). To present the basic flavor
of these models, we consider a model without an override possibility so

8This section draws heavily on Cameron and McCarty (2004).
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that q remains the policy in the event of a veto. To capture the un-
certainty that the proposer C faces about the receiver P ’s preferences,
we assume she believes P is one of two preference “types,” a moderate
with ideal point m or an extremist with ideal point e. We assume all
agents have linear preferences given by −|x − i| for policy x ∈ R and
ideal point i ∈ {c, e,m} where e < m < c. Let π be the probability
that P is the extreme type.
The main implication of the uncertainty about preferences is that C

no longer knows for sure which bills the president will accept and which
he will veto. To see this, consider Figure 10.2 where we assume that
q < e. Here the set of bills the extremist type of receiver is willing to
accept over the status quo is only a subset of those the moderate type
is willing to accept. Thus, C can force a more attractive bill (from her
perspective) on the moderate receiver than she can on the extremist
one. C’s dilemma is whether to propose a bill she finds relatively less
attractive but that both types will accept — a bill like be — or be more
aggressive and propose a bill — like bm — she finds more attractive but
only the moderate receiver will accept. Clearly, the attractiveness of
the gamble depends on C’s beliefs about P ’s type. If π is high (so
C believes P is probably an extremist), C will likely be deterred from
making the aggressive proposal. On the other hand, if π is low (so
C believes P is probably a moderate), C may well find an attractive
gamble. If she offers it, on occasion it will prove a poor choice: the
receiver will turn out to be the extreme type and will veto it.

Insert Figure 10.2 Here

Now we will compute the necessary conditions for an equilibrium
veto to occur. First, assume the preference configuration of Figure
10.2 holds,i.e. q < e < m < c. Let Bt(q) be the sets of bills that each
type t ∈ {e,m} is willing to accept over the status quo. Similar to our
analysis of the complete information version of the model, these sets
are [q, 2t− q] if t > q and [2t− q, q] otherwise. Notice that for any q,
president m is willing to accept a higher bill that is e. Since e > q, so
that be(q) = [q, 2e− q] ⊂ bm(q) = [q, 2m− q]— any bill that e accepts m
will accept, but the converse is not true. Therefore, C faces a tradeoff.
It can propose 2e− q which both types accept, or can propose 2m− q
which e will veto. Given C’s beliefs the latter strategy results in a
veto with probability π.
Case 1: c > 2m− q. Given C’s linear preferences, her utility from

b = 2e− q is 2e− q − c while her expected utility from b = 2m− q is
πq + (1− π) (2m− q) − c. Thus, if π ≤ m−e

m−q , she prefers b = 2m − q
and a veto occurs with probability π.
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Case 2: 2e− q < c < 2m− q. C’s payoff from b = 2e− q remains
2e − q − c, but now m will accept b = c. Thus, proposing her ideal
point leads to an expected utility of π(q − c). Thus, C will propose
b = c if π ≤ c+q−2e

c−q . Note that the critical value of π is lower than in
case 1 making a veto less likely for this preference configuration with c
closer to m.
Case 3: c < 2e− q. Now both types will accept b = c. So C’s

proposes its ideal point for all values of π and no vetoes occur.
The punchline of this simple model is that vetoes are much less

likely to occur when C’s preferences are closer tom and e. Empirically,
Cameron (1999) has found that vetoes are less likely to occur during
periods of unified party control of Congress and presidency which he
interprets as evidence for this prediction.

5.1. Models with Reputation, Learning, and Dynamics.
An interesting feature of the incomplete information model is that a
moderate receiver P does better if the proposer C believes P is the
extreme type. This raises the possibility that P might attempt to ma-
nipulate C’s beliefs about his type, his reputation. In this section, we
examine three models in which the actors try to manipulate P ’s rep-
utation. All are signaling models, because an informed player takes
an action that conveys information about P ’s type. In the first two
models, the veto threat and sequential veto bargaining (SVB) models,
the informed player is the receiver P himself. In the third model,
the blame game veto model, both C and P take actions to convey
information to uninformed voters.
5.1.1. Veto Threats. Ranging from the dramatic “read my lips” va-

riety to the much more mundane “statements of administration policy”
routinely produced by the Office of Management and Budget, the veto
threat is an important feature of legislative politics in the U.S. How-
ever, none of the models reviewed thus far provide any leverage on
understanding this phenomena. Matthews (1986) however provides
an influential model of veto threats where the president may use a
costless signal or “cheap talk” to reveal information about preferences
and veto intentions.
To illustrate this model, it is helpful to increase the number of

presidential types from two to four. Therefore, in addition to m and
e, we add the two following types: r the “recalcitrant” type and a
the “accommodating” type. We assume that each type and C have
linear preferences and that r < q < e < m < c < a as in Figure 10.3.
President r is called recalcitrant because he will veto any bill that C
prefers to the status quo while a is accommodating because he prefers
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c to the status quo. We will also assume that the probability of these
types are πr, πe, πm, and πa. In this game, the president first makes
a “speech” which is simply a costless signal to the legislature. Each
of these messages has no literal meaning, just a contextual one derived
from the equilibrium that is being played. Following the speech, C
updates her beliefs about the president’s preferences and then makes a
proposal which the president can either accept or reject.

Insert Figure10.3
As a baseline, first consider an equilibrium where the president’s

speeches contain no information because each type makes the same
speech. In this babbling equilibrium, C will simply choose the bill from
br = q, be = 2e − q, bm = 2m − c, or ba = c to maximize her utility.
For any such choice, those with lower types will veto. For example, if
C chooses bm, types e and r will veto so that the veto probability will
be πe + πr. Rather than present the formulae for the conditions for
each proposal, they are illustrated graphically in Figure 10.4. The first
figure shows which proposal will be made in the babbling equilibrium
for different values of πm and πe for given values of πa and πr. Note
that the proposal br = q is never made since C does at least as well with
a vetoed proposal. Note that this equilibrium is somewhat bad from
the president’s perspective. If the president is type a, there is a utility
loss associated with the fact that C may propose the less desirable
policies bm and be. For president m, there are losses associated with
the fact that C might propose c (which he then vetoes) rather than
his preferred be. Since r and e, only get their status quo utility from
all proposals, they are not affected. C is also affected by the lack
of information as it may force her either to accommodate more than
necessary or to risk a veto.

Insert Figure 10.4 Here
So given the bad outcomes from the babbling equilibrium, it is

reasonable to ask whether there are other equilibria where more infor-
mation is transmitted. Matthews shows that some information can be
revealed in presidential speeches, but not all of it. First, consider why
a separating equilibrium where every presidential type gives a distinct
speech cannot be an equilibrium. If C could learn the president’s
type from the speech, she would optimally propose br to r, be to e, etc.
However, sincem prefers be to bm, m would prefer to defect and give e’s
speech. Thus, a separating equilibrium cannot exist. Matthew’s shows
that the most informative equilibrium is one where type a reveals his
type with an “accommodating” speech and the other types all make
the same “threatening” speech. Following an accommodating speech,
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C correctly infers that the president will accept her ideal point and
thus proposes c. Type a is willing to make the accommodating speech
since she clearly prefers c to bm or be..Following the threatening speech,
C learns that the president is not a and updates her beliefs accordingly.
Given these beliefs, C chooses between bm and be. The second panel of
Figure 10.4 illustrates the optimal proposal as a function of πm and πe
for given values of πa and πr. There are two important things to note.
First, it is more likely that C proposes be because the knowledge that
the president is not type a makes the probability that bm will be vetoed
much higher. This leads to the prediction that C makes a larger con-
cession to the president’s preferences after a threatening speech than
after an accommodating speech.
It is important to note that an informative equilibrium is not guar-

anteed to exist. Suppose type a preferred bm to c to be, an informative
equilibrium would exists only if C’s best response to the threatening
message was be. Otherwise, a would defect to the threatening speech.
Similarly, if a prefers be to c, no informative equilibrium can exist.
It is possible for some configurations of preferences that the veto

threat is simply a bluff. Consider what would happen ifm were moved
in Figure 10.3 sufficiently to the right that he preferred c to q (thus be-
came an accommodator) but still preferred be to c. In the informative
equilibrium, m would still give the threatening speech, but it is a bluff
in the sense that he would have signed C’s ideal point.
The informative equilibrium makes C better off (if it didn’t she

could just turn off the TV and ignore the speech). However, it is pos-
sible that some presidential types will be worse off. Suppose that
a were repositioned so that his preference ordering were such that he
preferred bm to c to be. Further, suppose that the babbling equilib-
rium produced bm while a threat in the more informative equilibrium
produced be. Then a would clearly prefer the outcome of the babbling
equilibrium to the c she gets from making her accommodating speech
in the informative equilibrium.
5.1.2. Sequential Veto Bargaining with Incomplete Information. Of-

ten, the proposer can make multiple offers, learning about the receiver
as she does so. For example, if the receiver rejects a tough offer early,
the proposer may believe the receiver is genuinely tough. If so, the
proposer’s next offer is apt to be more accommodating. This “hag-
gling” dynamic is very common in many types of bargaining, and one
might well expect to see it in veto bargaining as well. But a compli-
cating factor is misdirection: the proposer will often have an incentive
to reject early offers in order to build a reputation that leads to better
later offers. But knowing this, why should the proposer actually make
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the compromises? The sequential veto bargaining model (SVB) model
explores these questions about learning and credibility.
A simple example conveys many of the basic ideas. First, consider

a situation in which q = 0, e = 1
4
, m = .6, and c = 1. By now it

should be clear that in a one-shot game (without a veto threat) be = .5
and bm = c. Using the results of the one-shot incomplete information
model, it is easy to see that C will offer bm = c if π < 1

2
and be = .5

otherwise. But suppose this is not a one-shot game, so that C may
make a second offer if the first is rejected. More specifically, suppose
bargaining breaks down with probability ρ, but otherwise a second offer
can be made (The probability of a bargaining breakdown reflects the
inherent uncertainty of the legislative and other political processes.) Is
a haggling equilibrium possible, that is, one in which C first makes a
tough offer then, following a veto and no bargaining break down, makes
a more accommodating offer?
In such a haggling equilibrium, the moderate president must accept

the tough offer in the first round (if both types rejected the tough
offer, then C should make the accommodating offer lest a break down
saddle her with the unappealing status quo). Therefore, the following
“incentive compatibility constraint” must hold:

(m− c) ≥ (1− ρ) (m− 2e+ q) + ρ (q −m)

or

ρ ≥ c− q − 2(m− e)

2 (e− q)
.

The incentive compatibility constraint indicates that accepting the
tough offer in the first round is better for the moderate type than reject-
ing the offer and holding out for the more proximate accommodating
offer, taking into account the probability of a bargaining breakdown.
In the example, the critical value for the break down probability is .6.
Let µ(e) be C’s belief that the president is the extreme type, following
a veto. Note the following: in a haggling equilibrium, it must be case
that µ(e) ≥ 1

2
, otherwise, following a veto, C will make the tough offer

again in the final period (this was proven above). But if the probabil-
ity of a breakdown is greater than .6, then the moderate type accepts
the initial offer, so that by Bayes’ Rule µ(e) = 1, following a veto, and
C will indeed make the accommodating offer in the second round.
There remains an additional incentive compatibility constraint to

examine, however. Congress must find it more appealing to make a
tough offer followed by an accommodating offer (conditional on a veto
and no break down), rather than make an initial accommodating offer
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that would be surely accepted. This requires that

π [(1− ρ) (2e− q − c) + ρ (q − c)] ≥ ρ (2e− q − c)

or

π ≤ c− 2e− q

c− 2e (1− ρ) + q(1− 2ρ)
In the example, this condition becomes π ≤ 1

1+ρ
. We can now indicate

a haggling equilibrium in the two period, two type sequential veto
bargaining model with the ideal points indicated earlier. If .6 ≤ ρ ≤ 1
and π ≤ 1

1+ρ
,then C offers b1 = bm = c and b2 = be = .5. Presidential

type m accepts both be and bm in both periods, while type e accepts
offer be and vetoes bm in both periods. Finally, C’s belief that the
president is an extreme type is µ(e) = 1 following a veto.
5.1.3. Bargaining over Multiple Bills. While the last section shows

that incomplete information can effect the dynamics of bargaining on a
single issue, McCarty (1997) considers how informational and reputa-
tional incentives alter the bargaining across multiple issues over time.
He considers a model of veto bargaining with incomplete information
where P and C bargain over a series of policies with status quo points
q1 and q2. In each of the two periods, C proposes bt and the president
decides whether to accept or reject it. . Thus, bargaining over each
policy is modeled as one-shot such that if P vetoes bt the status quo
qt is the policy outcome. Since the president’s ideal point is assumed
to be constant across policies, the outcome on policy 1 may provide
information to C prior to her making an offer on policy 2. Since in
the last period, the game is identical to the one-shot incomplete in-
formation game described above, type m does better on the second
policy by having C believe that he is the extreme type if preferences
are such as those given in panel a or b. Thus, given those preference
configurations, m may be willing to use his first period veto to build a
reputation as the extreme type in order get a better outcome on policy
2. This involves rejecting bills that he, but not type e, prefers to q1.
Thus, reputational incentives increase the likelihood of a veto on policy
1. Given that C understands these incentives, she may be willing to
be sufficiently accommodating on the first policy to discourage type
m from vetoing on reputational grounds. Thus, McCarty’s model pre-
dicts a “honeymoon” pattern of accommodating policies early in the
president’s term followed by less accommodating policies toward the
end when reputational incentives are diminished. However, he notes
that since the existence of reputational incentives depends on prefer-
ence configurations such as those in panel a and b, this honeymoon
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effect is unlikely when the expected difference P and C is small such
as during unified governments.

5.2. Blame Game Vetoes. A recent model argues that vetoes
are less a product of legislative uncertainty than of electoral politics.
Groseclose and McCarty (2000) examines a model in which the legisla-
tive agenda setter uses its proposal power to signal that the president
has policy views that are out of step with the voters. In this “blame
game” model, vetoes occur when the agenda setter receives a larger
payoff from signaling that the president has extreme preferences than
she does from enacting new policy. Thus, in this model, the elec-
torate’s uncertainty about the president is critical, not the uncertainty
of legislators.
To illustrate a simple version of this model, consider a new actor V ,

the voter. We assume V also has linear preferences and an ideal point
v. Following the notation of the last section, V believes the president
is type e with probability π and type m otherwise. We focus on the
case where e < m < v. We assume the voter evaluates the president
based on the expected distance between the president’s ideal point and
her own ideal point. Therefore, the voters evaluation is just

w(e,m, π; v) = −π|v − e|− (1− π) |v −m| = πe+ (1− π)m− v

An important feature of this model is that P and C care how much
expected utility V gets from the president’s position. The most inter-
esting case is one of conflict, in which the president gets greater utility
when the voter believes he is a moderate and Congress gets greater
utility when the voter believes the president is an extremist. Such a
case would plausibly arise when Congress and the presidency are con-
trolled by different political parties or factions, especially when those
parties are highly polarized ideologically, and voters are generally more
moderate. In such a case, C and P trade gains from enacting policy
with gains from political posturing. More specifically, the president
would like to take actions that lead the public to lower π while the
legislature would like to take actions that lead the public to increase
π. We allow C and P to value these trade-offs differently by letting λc
and λp be the respective weights each place on policy. Therefore, the
utility functions for C and P become:

−λc|x− c|+ (1− λc) (πe+ (1− π)m− v)

and

−λp|x− p|− (1− λp) (πe+ (1− π)m− v)
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An important assumption of this model is that while V is relatively
uninformed about P ’s preferences, C is fully informed. Therefore, C
may be able to credibly communicate its information about π through
its choice of bill. Similarly, the president’s decision whether to veto
particular proposals may also provide information to voters about his
preferences.
A particularly interesting equilibrium is one in which C proposes

an acceptable bill when P is moderate and submits a bill that will be
rejected when the president is extreme. McCarty (2002) shows that
such an equilibrium is the only one in which vetoes occur and it exists
if and only if the following two conditions hold:

(10.1)
λp − λc
λpλc

(1− π) (m− e) ≥ 2 (e− q)

and

(10.2) 2 ≥ λp − λc
λpλc

π

These conditions produce a number of predictions about the occurrence
of vetoes.9 First, note that the first condition cannot be satisfied ifm =
e or π = 1. Thus, voter uncertainty about the president’s preferences is
crucial. Without this uncertainty, orchestrating a veto has no signaling
value to C so she might as well make acceptable proposals to both
types. Next, note that both conditions are easier to satisfy when π
is lower. Since the ex ante evaluation of the president is decreasing in
π (the probability he is extreme), the model suggests that vetoes will
occur more likely when the public believes the president is moderate
(that is, believes the president is ideologically proximate). Intuitively,
Congress finds the blame game most attractive when it has negative
information about the president’s policy preferences that is inconsistent
with the voter’s beliefs.
The next three prediction are based on C and P ’s willingness to

trade policy gains for political gains. Figure 10.5 illustrates how each
of the conditions are affected by the policy weights λp and λc. The
area under the higher solid line represents the combinations of λp and λc
that satisfy the first condition. Alternatively, the area above the lower
dashed line are those satisfying the second condition. The blame game
equilibrium described above exists in the intersection of these regions.
First, note that the first condition can be met only when λp > λc,

9These are conditions are necessary for the case of c > 2m − q +
1−λp
λp

(m −
e). Different positions of c result in slightly modified but qualitatively similar
conditions.
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suggesting that the president must put relatively more weight on the
policy outcome than does Congress. If this were not the case, C would
prefer to achieve policy gains by passing mutually attractive bills rather
than seek purely electoral advantage by passing bills the president will
reject. However, the second condition puts an upper bound on the
difference in policy weights. If λp is much greater than λc, C loses the
ability to signal credibly through its proposals. One final prediction
emerges from the fact that only extreme types ever veto in the blame
game model. Since only type e vetoes, every veto is followed by a
reduction of voter support.

Insert Figure 10.5 Here

6. Application: Crisis Bargaining

One of the limitation of bargaining theory is that solutions are gen-
erally highly dependent on the bargaining protocol and are therefore
not robust to changes in the extensive form of the game. In the context
of veto bargaining, this is not such a large problem because its protocol
is often codified in constitutional provisions and well-established leg-
islative procedures. However, in the case of crisis bargaining among
sovereign states, it is clearly less desirable to have bargaining solutions
depend heavily on particular extensive forms since the relevant proto-
cols are generally more informal, non-codified, and unobservable due
to secrecy concerns.
Recognizing this problem, Banks (1990) considers what equilibria

of a large class of crisis bargaining games have to have in common.
Consider the following crisis bargaining scenario. Two states 1 and
2 bargain over 1 unit of territory. Let x be the share that country
1’s. Following Banks, we assume that both countries are risk neutral
so that we can define country 1’s payoffs from a settlement as x and
country 2’s as 1− x. Failure to reach an agreement on the division of
the territory leads to a war.10 We assume that country 1’s expected
utility of a war is u and country 2’s is v. These expected utilities
encapsulate expectations about the probability of winning the war, the
benefits of winning and losing, and the allocation of territory that the
winner can secure.
Banks assumes that country 1 has an informational advantage vis a

vis country 2 about the values of (u, v). Following the usual practice,
he models this asymmetric information by assuming the country 1’s
type is some t ∈ T defined such that country 1’s expected benefits of

10We include in the set of possible agreement that the the status quo ex ante
remains intact.
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war, u(t), are increasing in its type. While country 1 learns t prior to
negotiations, country 2 has only a common knowledge prior f(t) over
T .
Given this framework, standard game theoretic models would spec-

ify a set of decisions available to the countries and a (probabilistic)
outcome function specifying the probability of a war and the distribu-
tion of settlements as a function of these decisions. From this model,
equilibrium strategies (σ1(t), σ2) from which the equilibrium probabil-
ity of war p(t) and expected settlement x(t) can be derived. In such
an equilibrium, country 1’s payoffs are

U(t;x, p) = p(t)u(t) + (1− p(t))u(t)

Clearly, not every p(t) and x(t) can arise from a Bayesian equilibrium.
In particular, Bayesian equilibrium places two requirements. The first
is incentive compatibility. Type t cannot prefer the outcomes p(t0) and
x(t

0
) to p(t) and x(t). Otherwise it would defect from its equilibrium

strategy σ1(t). Thus, incentive compatibility requires

p(t)u(t) + (1− p(t))x(t) ≥ p(t0)u(t) + (1− p(t0))x(t0)(10.3)

p(t0)u(t0) + (1− p(t0))x(t0) ≥ p(t)u(t0) + (1− p(t))x(t)(10.4)

The second condition imposed by Bayesian equilibrium is individual
rationality.11 It cannot be the case that u(t) is greater than x(t) unless
p(t) = 1 . Otherwise, t would withdraw from the agreement and start
a war with probability 1. The individual rationality constraint is

(10.5) p(t)u(t) + (1− p(t))x(t) ≥ u(t)

While incentive compatibility and individual rationality are minimal
requirements, we will see that they impose quite a bit of structure on
bargaining outcomes. The most important feature of the Bayesian
equilibrium concern the monontinicity of p, x, and U in t.

Lemma 10.1. If p and x are incentive compatible and individually
rational, then p(t) is weakly increasing on T .

Proof. Let t0 > t. Note that we can subtract the right side of
equation 10.3 from the left side of equation 10.4 and the left side of
equation 10.3 from the right side of 10.4 to produce

p(t0)[u(t0)− u(t)] ≥ p(t)[u(t0)− u(t)]

Since u(t) is strictly increasing, u(t0)− u(t) > 0 so that it must be
the case that p(t0) ≥ p(t). ¤

11The similarity of Banks’ approach to mechanism design should be obvious to
the attentive reader.
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This lemma shows that in any Bayesian equilibrium the probability
of war cannot decrease as country 1’s expected utility of war increases.
Not only is this a feature of strategic models, it is consistent with the
assumptions of a number of decision-theoretic models of war.
For the next result, we need to define the set of types who resolve

the dispute through bargaining with a positive probability for some
outcome p, x. Let Tb(x, p) = {t ∈ T : p(t) < 1}. Note that individual
rationality requires that x(t) ≥ u(t) for any t ∈ Tb.

Lemma 10.2. If p and x are incentive compatible and individually
rational, then x(t) is weakly increasing on Tb.

Proof. Let t, t0 ∈ Tb and t0 > t that that Lemma 1 implies 1 >
p(t0) ≥ p(t). Since x(t) ≥ u(t) for all t ∈ Tb, we know that

(10.6) p(t)u(t0) + (1− p(t))x(t0) ≥ p(t0)u(t0) + (1− p(t0))x(t0)

We can combine this result with equation 10.4 to produce

p(t)u(t0) + (1− p(t))x(t0) ≥ p(t)u(t0) + (1− p(t))x(t)

which reduces to x(t0) ≥ x(t) after dividing by (1 − p(t)) which we
know is positive since t ∈ Tb. ¤

Not surprisingly, country 1 must do at least as well in the bargaining
outcome when its war utility improves. Thus, taken together Lemmas
2 and 3 suggest that in any Bayesian equilibrium that higher types
may get better bargaining outcomes, but that this comes at a greater
risk for war.12 However, incentive compatibility requires that these
trade-off benefit higher types (or else they would mimic lower types).
Let Tw = {t ∈ T : p(t) > 0} so that Tw is the set of types that go to
war with some probability.

Lemma 10.3. If p and x are incentive compatible and individually
rational, then U(t;x, p) is weakly increasing on T and strictly increasing
on Tw.

Proof. Let t0 > t, and t0, t ∈ Tw. Suppose (contra the lemma)
that U(t) ≥ U(t0) so that

p(t)u(t) + (1− p(t))x(t) ≥ p(t0)u(t0) + (1− p(t0))x(t0)

Since u(t0) > u(t), this implies that

(10.7) p(t)u(t0) + (1− p(t))x(t) ≥ p(t0)u(t0) + (1− p(t0))x(t0)

12Banks also shows that if x and p are incentive compatible and individually
rational then x(t0) > x(t) if and only if p(t0) > p(t) for t0 > t and t, t0 ∈ Tb.
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Since t0, t ∈ Tw, p(t) and p(t0) are greater than zero so that equation
10.7 violates equation 10.4. Thus, U(t0) > U(t). However, this strict
equality does not hold on T/Tw. If t, t

0 ∈ T/Tw, then p(t) = p(t0) = 0
so that equations 10.3 and 10.4 clearly imply that x(t) = x(t0) and
U(t) = U(t0). ¤
Thus, having a better expected utility of war cannot make country 1

worse off. In fact, for types that go to war with a non-zero probability,
higher war payoffs leads to strictly higher equilibrium payoffs.13.
While the incentive compatibility approach can go a long way to-

wards telling us what predictions are generic to crisis bargaining mod-
els, there are a number questions that it cannot resolve. For example,
we do not learn how country 2’s perceptions of country 1’s war utili-
ties, as measured by the priors f(t) effect the likelihood of war or the
bargaining settlement. For that we will have to turn to more explicit
models of crisis bargaining.

6.1. Models of Crisis Bargaining. Fearon’s (1995) seminal ar-
ticle explores several models in the class covered by Bank’s results.
He gives a specific form for (u, v)̇. In particular, Fearon assumes that
each country has a cost of war ci > 0, country 1 wins any war with
probability π ∈ (0, 1), and the winner of the war can impose its most
preferred settlement (x = 1 for country one and x = 0 for country 2).
Therefore, u = π − c1 and v = 1 − π − c2. Let x0 be the status quo
allocation of the territory.
Given this framework, we can define the set of agreements that

each side will accept in lieu of going to war. For country 1, we require
that x > π − c1 and for country 2 we require 1 − x > 1 − π − c2.
Therefore, any allocation x ∈ [π − c1, π + c2] avoids conflict. Since
the costs of war are positive, the set of peaceful agreements is non-
empty. Therefore, under perfect information, we should expect that
one of these agreements will be reached and war will be avoided.14

Fearon considers a simple model with incomplete information about
country 1’s costs. While he assumes a continuous distribution of c1, it
suffices for us to consider a cost where c1 can take on only two values
c > c. The common knowledge prior is that cA = c with probability λ.
Fearon first considers a model where country 2 makes a single take-it-
or-leave-it offer to country 1. If country 1 rejects it, war ensues.

13Banks also shows that U(t;x, p) is continuous in t, but we refer the reader to
his article.

14This statement of course assumed that the territory is infinitely divisable so
that an agreement in thus region is feasible. This may not be the case in some
disputes especially when the terrotory involves religious or ideational significance.
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In analyzing this model, note that if country 2 offers x ≥ π−c both
country 1 types will accept and war will be avoided. Clearly, country
2 has no incentive to pay higher than π − c, so let x = π − c. If
country 2 offers x ∈ (π − c, π − c], only the low cost type will accept it
so that war starts with probability λ. Of these offers, country 2 prefers
x = π − c. Finally, if country 2 offers x < π − c both types reject
and a war starts with certainty. This generates a payoff to country 2
of v = 1− π − c2. Thus, country 2’s choice boils down to a choice of
three utilities 1− x, λv + (1− λ) (1− x), or v. We can easily dismiss
the third option. Since the interval [π − c, π + c2] is non-empty, we
know that 1 − x > v. Thus, country 2 will never choose to sabotage
the negotiations to generate a war with probability 1. Now we can
determine country 2’s preferences over the remaining offers. Clearly,
λv + (1− λ) (1− x) ≥ 1− xwhenever

λ ≤ c− c

c2 + c

Thus, when the probability that country 1 has low costs is sufficiently
low, country 2 will take an aggressive bargaining stance that risks war
in the event that country 1 actually does have low costs. Note that
the critical threshold is decreasing in country 2’s costs since it is less
willing to take such a risk when its military capabilities are low.
We can easily check that Bank’s results hold trivially for this model.

When λ > c−c
c2+c

, both types get the same allocation and have zero
probabilities of going to war. When λ ≤ c−c

c2+c
, both types are still

offered the same allocation but c goes to war with probability one.
As Fearon notes there are reasons skeptical of informational ex-

planations for war. Perhaps opportunities for communication should
resolve such informational asymmetries and avoid war. However, given
that the countries have diametrically opposed preferences over the allo-
cations, it is easy to show that cheap talk will not influence bargaining
or the probability of war. Now let country one announce H or L as
a signal of its costs c and c, .respectively 15 Following the message, let
λ∗ be country 2’s updated beliefs about 1’s costs. Clearly, based on
the these updated beliefs, country 2 will use the same cutpoint rule
as before. First we consider whether there are separating equilibria
where type c reports H and c reports L. In such a case, λ∗(H) = 0,
λ∗(L) = 1, x(H) = x, and x(L) = x. The probability of war would be
zero. Therefore, separating messages requires the incentive compat-
ibility conditions x(H) ≥ x(L) and x(L) ≥ x(H). These conditions

15The restriction to two messages or enbuing them with literal meaning is not
consequential.
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clearly fail since x > x. We leave it to the reader to verify that there
are no partially information semi-pooling equilibria.

6.2. AModel of Escalation*. This section is based Fearon (1994)
who develops a version of the war of attrition to explore how “audi-
ence costs” imposed on states who back down in international disputes
effect the dynamics of crisis escalation.
Assume that two states 1 and 2 are in a dispute over a prize worth

v > 0. The game is played in continuous time beginning at t = 0.
At every instant each state can choose among three strategies: attack,
quit, or escalate. The game continues until one or both of the states
quits or attacks. If both states choose escalate, the game continues.
If either state attacks before the other quits they both receive their
expected payoffs from war wi < 0. Fearon interprets these payoffs as
resolve since the state with the higher wi is relatively more willing to
engage in military conflict to settle the dispute.
Fearon’s interest is in understanding how the sanctions imposed on

leaders who back down during disputes effect crisis behavior. There-
fore, he assumes that if state i quits before state j at time t if suffers
audience costs ai(t) which are strictly increasing in t. The dependence
on t is designed to reflect the intuition that it is more costly to back
down during a protracted dispute than in a short one.
A pure strategy in this game specifies for any subgame beginning

at time t0 a rule specifying a finite time t ≥ t0 at which to attack or
quit.16 We can write these strategies as {t, attack} meaning “escalate
until t and then attack” or {t, quit} to represent “escalate until time t
and then quit.”
Before turning to the more general model where each side is un-

certain of the other’s resolve, it is instructive to consider the case of
complete information. For each state, we can compute the time t for
which it strictly prefers to attack rather than back down. Clearly, this
occurs when wi ≥ −ai(t). Let

ti = −a−1i (wi)

Suppose, either because state 1’s resolve or audience costs are higher,
that t1 < t2. Thus, at t1, state 2 prefers still prefers to quit than be
attacked, thus it will quit. Let Qi(t; t

0) be the probability that state
i quits before time t conditional on it not quitting before t0 and Qi(t)
be the unconditional probability of quitting by time t.

16Not allowing “never quit” to be part of the stragy set eliminates the uninter-
esting equilibrium where both sides choose this strategy and escalate forever.
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Thus, at every subgame 0 ≤ t0 < t1, state 2 receives −a2(t0) for
quitting immediately and Q1(t; t

0)v − (1−Q1(t; t
0))a2(t) for {t, quit}.

However, consider state 1’s strategy. From subgame 0 ≤ t0 < t1,
strategy {t1, attack} has a payoff of v while {t, quit} has a payoff of
Q2(t; t

0)v − (1 − Q2(t; t
0))a2(t) < v. Therefore, Q1(t; t

0) = 0 for all
t < t1. Now we can see that state 2’s payoff from {t, quit} is −a2(t) <
−a2(t0). Thus, state 2 will quit immediately at every subgame 0 ≤ t0 <
t1 including 0. The equilibrium with complete information therefore
involves state 2 stopping immediately and state 1 claiming the prize.
The complete information equilibrium has the property that both

high resolve and audience costs lead to better crisis bargaining out-
comes. However, it has the unsettling prediction that no crises ever
occur, because the weaker side capitulates immediately. Therefore,
Fearon also considers an incomplete information version of the game
where each side is uncertain of the others resolve. We assume that the
resolve of state i is distributed according to the cumulative distribution
function Fi on the interval [wi, 0].
Just as in the complete information game, the equilibrium depends

on defining a time point after which neither state will wish to quit.
Fearon refers to such a time point as the horizon of the crisis game.
Formally, we define this horizon point as th, the earliest time point at
which that Qi(t) is not increasing for t > th for i = 1, 2.
Fearon observes that the following must be true in any PBE17:

(1) Both states quit simultaneously with probability zero. Sup-
pose states 1 quits with positive probability mass at t0. Then
clearly state 2 has an incentive to wait at until at least t0 + ε
before quitting as this increasing its probability of winning v
substantially with only an infinitesimal increase in its audience
costs. Similarly, there are no PBE where a state quits con-
temporaneous with an attack from the other state. Again, if
state 2 expects that state 1 will quit with probability mass at
point t0, it should hold off its attack until t0 + ε. This implies
that both states cannot plan to quit at th.

(2) State i will not attack during at time t0 if Qj(t) is increasing
at t0. Since attacks have negative expected utility, it pays to
wait longer in the hopes that the opponent will drop out prior
to the attack.

(3) Both states will quit with positive probability in time intervals
arbitrarily close to th. By the definition of th, at least one state

17For formal statememnts of these observations and their proofs, see Fearon
1994.
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must quit with positive probability in the arbitrarily small in-
terval before th. Suppose that this is true for state i. Now
suppose to the contrary that state j quits with zero proba-
bility after time t0 < th. Clearly from observation 2, state
2 will not attack between t0 and th. Therefore, quitting with
positive probability after t0, state 1 unnecessarily increases its
audience costs — it knows it will quit before state 2 yet it keeps
escalating.

(4) Both states attack with probability zero for t < th. This
follows directly from observations 2 and 3. Therefore, the
utility of strategy {t > th, attack} for state i is

(10.8) Ua
i (t, wi) = Qj(th)v + (1−Qj(th))wi

while the utility of {t < th, quit} is
(10.9) U q

i (t) = Qj(t)v − (1−Qj(th))ai(t)

Since U q
i (t) does not depend on wi, {t < th, quit} can only

be a best response if it is constant for all t, say ki. Suppose
this were not true and let U q

i (t
0) > U q

i (t) for some t0 < th
and all t < th. Then all types such that U q

i (t
0) > Ua

i (th, wi)
would quit exactly at t0. State j’s best response would then
be {t > t

0
, quit} making U q

i (t
0) = −ai(t0) which contradicts

U q
i (t

0) > U q
i (t) for all t < th.

Based on these observations, the following lemmas help to charac-
terize the perfect Bayesian equilibrium for this game.

Lemma 10.4. In any equilibrium in which both states choose to
escalate with positive probability, there must exist a finite horizon th.

The logic of this lemma straightforward. Suppose to the contrary
that there were a PBE where Qi(t) were increasing for all t. By
observation 2, state j will not attack with probability 1 which turn (by
observation 4) suggests that U q

i (t) is constant for all t. This implies
that

Qj(t) =
ki + ai(t)

v + ai(t)

However, since j never attacks, it must be the case that lim
t→∞

Qj(t) = 1.

This can only be true if ki = v or lim
t→∞

ai(t) = 1. If ki = v, Qj(0) = 1

implying that j does not escalate with probability 1. If lim
t→∞

ai(t) = 1,

i will not wish to choose {t, quit} for arbitrarily large t.
Lemma 10.5. In any equilibrium with th as the horizon and in which

escalation may occur, (1) if state i chooses {t, attack} it must be the
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case that t ≥ th; and (2) state i will choose {t, attack} where t ≥ th if
wi > −ai(th) and only if wi ≥ −ai(th).
Part 1 of this lemma follows directly from observations 2 and 3.

Ignoring several technical complications, part 2 follows from the fact
that Ua

i (t, wi) ≥ U q
i (t) if and only if wi ≥ −ai(th).18

From lemma (2) we know that the ex ante probability that state j
will attack at th is (1− Fj(−aj(th))) . Thus, state i’s ex ante utility of
escalating up to th and then backing down is

ui(th) = Fj(−aj(th))v − (1− Fj(−aj(th))) ai(th)
We can then define t∗i such that ui(t

∗
i ) = 0. Thus, t

∗
i has the property

that state i is indifferent between escalating to time t∗i and conceding
immediately.19

Proposition 10.4. Let t∗i be the unique solution ui(t
∗
i ) = 0 and

t∗ = min{t∗1, t∗2}. For any equilibrium in which escalation occurs with
positive probability, the horizon must be t∗.

If th were greater than t∗, the state with the lower t∗i would have an
incentive to quit with probability 1 before td. This would contradict
observation 3. If td were greater than t∗, then both states would
have an incentive to bluff a little longer at td before quitting. This
contradicts the definition of td.
These lemmas lead directly to the main result.

Proposition 10.5. Label the players so that t∗ = t∗2 < t∗1. Let
k1 = u1(t

∗) > 0. The following describes equilibrium strategies for
state i = 1, 2 as a function of type wi:
For wi ≥ −ait∗, state i plays {t, attack} for any t > t∗.
For wi < −ait∗, state i plays {t, quit} with any pure strategies that

yield the following cumulative distributions

Ψ1(t) =
1

F1(−a1(t∗))
a2(t)

v + a2(t)

Ψ2(t) =
1

F2(−a2(t∗))
k1 + a1(t)

v + a1(t)

For t ≤ t∗, state i believes that the probability that j will not back down
is given by

Pr(wj ≥ −ajt∗|t) =
v + ai(t)

v + ai(t∗)

18The technical complications involve ruling situations were Qi(t) has mass
points.

19We implicitly assume that the range of ai(t) is sufficiently large that there is
a unique solution to ui(t∗i ) = 0.
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For t > t∗, state i’s beliefs follow Bayes’ Rule in accord with the op-
ponents’s strategy for attacking. For any t > t∗ off the equilibrium
path, let i believe that wj > −aj(t∗) and is distributed according to Fj

truncated at −aj(t∗).
Proof. Let Qi(t) be the unconditional probability that state i

quits by time t From lemma (2) and Proposition (1), Qi(t
∗) = Fi (−ai(t∗)).

The utility to state i of {t, quit} is therefore
Qj(t)v − (1−Qj(t))ait

To ensure that i is indifferent between quitting and continuing for any
t < t∗, we require that Qj(t)v − (1−Qj(t))ai(t) = ui(t

∗) or

Qj(t) =
ui(t

∗) + ai(t)

v + ai(t)

Since only types wj < −aj(t∗) ever quit, these types must be quit at
rates 1

Fj(−aj(t∗))Qj(t) or Ψj(t) =
1

Fj(−aj(t∗))
ui(t

∗)+ai(t)
v+ai(t)

.
We know that by time t, Ψj(t) of the types in the interval [wj, ajt

∗)
will have dropped out so that

Pr(wj ≥ −aj(t∗)|t) =
1− Fj(−aj(t))

1− Fj(−aj(t)) + Fj(−aj(t)) (1−Ψj(t))

Pr(wj ≥ −aj(t∗)|t) =
1− Fj(−aj(t))
1−Qj(t)

=
(1− Fj(−aj(t))) (v + ai(t))

v − ui(t∗)

Pr(wj ≥ −aj(t∗)|t) =
v + ai(t)

v + ai(t∗)

¤
In this PBE, types with low resolve from state i drop out at a

rate designed to keep the low resolve types state j indifferent between
dropping out and escalating through time t∗. At time t∗, both states
attack because they know that all of the low resolve types for the other
state would have dropped out by then and escalating would simply lead
to larger audience costs.
It is instructive to explore why low resolve types of state j quit at a

rate to make low resolve types of state i indifferent between dropping
out and escalating. If they dropped out at a faster rate, all low-resolve
types in state i would conclude at each t that state j is more likely to
be a strong type. This would lead low-resolve types of state i to quit
more quickly. Then state j would then begin to infer that the pool
of state i types is stronger, and begin to drop more quickly. In the
limit, all low-resolve types would quit at t = 0, but this cannot be an
equilibrium (recall Observation 1).
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Now consider what happens if low resolve types from state i drop
out at a slower rate than the equilibrium. Then at each t, state j would
infer that the pool of remaining types is weaker than the corresponding
equilibrium pool. This would lead state j types to also drop out at a
slower rate, which in turn induces state i to escalate more, and so on.
Such a dynamic would lead to all types to prefer escalating until t∗.
However, this cannot be an equilibrium because the low resolve types
would have clear preference for dropping out before t∗ than attacking
at t∗.
An important substantive feature of the model is that it turns out

to be beneficial to be able to incur large audience costs. Such a state
is better able to convince its opponent that it is “locked-in” to the
conflict since a larger set of types are willing to escalate to the horizon
and then attack. This runs counter to a simple intuitive prediction that
those with the most to lose by backing down will back down earlier.
However, conditional starting a crisis, the signaling value outweighs this
effect. By modifying his model slightly to include an explicit initiation
phase, Fearon argues that this framework provides a justification for
why democracies (highly sensitive to audience costs) might be less likely
to initiate conflict, but will be more likely to prevail.

7. Exercises

Exercise 10.1. Let Ui(xi) = lnxi for i ∈ {A,B}. Solve for the
Nash bargaining solution as a function of the disagreement values.

Exercise 10.2. In the Rubinstein bargaining model with δ1 = δ2
and d1 = d2 = 0, assume that ui(xi) = xαi where 0 < α < 1. Compute
the SPNE shares. What is the effect of risk-aversion (lower α)?

Exercise 10.3. Consider the Baron-Ferejohn model where ui(xi) =
xαi . Show that the initial proposer’s share is decreasing in α.

Exercise 10.4. In the model described in Section 3.2 with N = 3
and m = 1, suppose that 1−δ

3−2δ < q ≤ 1
3
. Compute a mixed strategy

equilibrium where vA = vB.

Exercise 10.5. In the model described in Section 3.2, compute vA
and vB for generic values of N and n.

Exercise 10.6. Consider an extension of the model described in
Section 4.1. First assume that there is two rounds of bargaining so that
A makes a counter offer if it rejects B’s initial offer. Assume that
the payoffs are discounted by a factor δ if agreement is reached in the
second round. What is the PBE to this game? Now assume that there
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is incomplete information about B’s disagreement value where uB = 0
with probability π and uB = d withe probability 1 − π? Construct a
PBE equilibrium to this game. Is it unique?

Exercise 10.7. Consider an extension of the model considered in
Section 3.3. Assume that there are two groups of bargainers, 1 and
2. Let mi be the number of members of group i so that m1+m2 = N .
Suppose that all members of group i have a qualified veto power in that
if they object to the proposal ki votes are required to override their veto
where 0 < ki < N . Assume that k1 > k2. Compute continuation
values for members of each group.

Exercise 10.8. In the model described in Section 6.1, assume that
c1 is distributed uniformly on the interval [c, c]. Compute the perfect
Bayesian equilibrium. Now consider the extension with pre-bargaining
cheap talk. Show that if c, there is a PBE where the high cost types
reveal information about their cost to country 2.





CHAPTER 11

Mechanism Design and Agency Theory

So far we have discussed techniques for analyzing how strategic
agents behave in specific games. In social settings where the “rules”
are fairly clear, this approach to game is a powerful source of empirical
predictions about the outcomes of strategic interactions.
An alternative approach is to ask a slightly different question: given

a desired outcome, what game should be designed so that strategic
agents will produce it? The field of game theory that asks such ques-
tions is called mechanism design. Here a designer or principle selects
a Bayesian game, or mechanism, for an agent or group of agents to
play. Examples include the selection of tax codes to induce agents to
reveal their willingness to fund public projects, the design of auctions
to maximize revenue, and selection of reelection functions by voters to
create incentives for government officials to “behave” while in office.
Typically, we model the choice of mechanisms as a maximization

problem given the designer’s preferences over agent types and out-
comes. If the designer’s preferences can be interpreted as an objective
notion of social preferences then the problem of selecting a mechanism
can be viewed as a normative exercise. A classic example is the se-
lection of rules to determine the provision of public goods so as to
maximize the sum of individual utilities. Given this normative inter-
pretation, mechanism design is closely related to social choice theory.
A version of mechanism design known as implementation theory seeks
to uncover classes of choice rules (mappings from agent types to collec-
tive decisions) for which there exists a mechanism which will achieve
the choice function. Choice functions of this type are said to be imple-
mentable. The Gibbard-Satherwaite theorem was an example of this
type of work.
While the applications of mechanism design are often normative or

prescriptive, we also may use it to make positive predictions. For ex-
ample, mechanism design is often used to investigate whether a poorly
informed principal (e.g. legislature or executive) can create incentives
so that well informed agents (e.g. committees or bureaucrats) take
actions to achieve ends which the principal desires.

257
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In most applications in economics, it is assumed that the designer
has a very rich set of games to choose from. She is usually free to com-
mit to contracts with very elaborate reward and punishment schemes.
Such assumptions seem entirely reasonable in economic settings where
third-parties such as courts may be counted on to enforce complex
agreements and large monetary rewards and sanctions are considered
legitimate. However in applications to politics, it is often unreason-
able to believe that principals can pre-commit to reward scheme be-
cause third-party enforcement is often unavailable. Also, the monetary
incentives may be legally or socially proscribed. Accordingly, after pre-
senting some basic concepts and results of implementation theory and
mechanism design, we will focus much of our attention on the design
of incentive mechanism when the principal is more constrained.
To get a feel for mechanism design, let’s consider one of the classic

examples — a political science department of nmembers and a chair that
is deciding whether to purchase a nice Saeco espresso maker. The fancy
coffee maker has a cost c and the chair wants to see if the department
members value the machine enough to justify the expense. Assume
that each member’s valuation of the coffee maker is θi ∈ R1+. The chair,
a Benthamite and non-coffee drinker1, wishes to purchase the machine

if and only if
nX
i=1

θi ≥ c. Unfortunately, the chair does not know the

valuations of individual department members. Instead she believes
that each members type is drawn from the probability distribution
F (·). What should the chair do? One solution might be to privately
ask each member for his valuation and purchase the espresso maker
with department funds if the total announced valuations exceed c. The
problem is that some colleagues might find it advantageous to inflate
their valuations in order to increase the likelihood that the machine
is purchased. Thus, this scheme induces a game where each faculty
member’s best response is to report a valuation that exceeds his true
preference. So this solution may not do a very good job in determining
whether the espresso maker should be purchased. The chair may decide
that a better solution is to ask each member to contribute her valuation
and then if the total contributions exceed c, purchase the maker, and
keep the surplus to pay for coffee beans. If the contributions do not
reach c, the chair would return them. This mechanism is also flawed.
Now the strategic scholars may decide to understate their valuations

1Jeremy Bentham (1748-1832) was a prominent British philosopher who ad-
vocated an ethical system based on pursuing the “greatest good for the greatest
number.” Historians record that he was also a coffee drinker.
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hoping to free-ride off the contributions of their colleagues. This rule
creates the classic collective action problem.
While neither of the preceding schemes works well, we can use the

theory of mechanism design to uncover a class of particularly simple
mechanisms that can be used by the chair to learn the faculty’s pref-
erences. Groves (1973) and Clarke (1971) show that the following
mechanism has good properties.

• Ask each faculty member to e-mail her valuation mi to the
chair.

• If
nX
i=1

mi ≥ c purchase the coffee maker, otherwise do not.

• If the coffee maker is purchased collect from faculty member i
the amount ti(mi.m−i) = c−

X
j 6=i

mj.

• If the coffee maker is not purchased, collect no money.

We can demonstrate that given this mechanism each faculty mem-
ber has an incentive to reveal her true valuation regardless of the other
members’ valuations. A key property of this mechanism is that mem-
ber i’s message only indirectly effects her contribution through its effect
on the ultimate decision about whether to purchase the espresso maker.
The amount that each member pays depends on the messages of all the
other members.
To see that all members will offer truthful messages, consider the

decision of member i with type θi. Suppose that she were to lie
with the announcement m0

i < θi. This understatement affects the
outcome only if affects the likelihood that the machine is purchased,
or if

X
j 6=i

mj + mi < c <
X
j 6=i

mj + θi. Under these circumstances,

c −
X
j 6=i

mj < θi so that the contribution required from truthful an-

nouncement, c −
X
j 6=i

mj is less than the member’s value of the new

espresso maker. This deviation from a truthful response can only make
the department member worse off. Now consider whether a member
has an incentive to overstate her demand for espresso with a message
m0

i > θi. This fabrication only effects i’s utility if the inflated message
results in purchasing the machine where the truthful message would
not have. Such a scenario requires that

X
j 6=i

mj +mi > c >
X
j 6=i

mj + θi
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so that c−
X
j 6=i

mj > θi. Thus, member i’s contribution is more than

her value the coffee maker. So lying doesn’t pay.
Beyond promoting honesty in departmental affairs, the Groves-

Clarke mechanism has the desirable property that the espresso maker
is purchased if and only if the aggregate valuation of the department
exceeds its cost. However, it has a less desirable property that it is not
“budget balancing.” When the machine is purchased, the chair collects
nX
i=1

ti(mi.m−i) = nc −
nX
i=1

X
j 6=i

mj which is greater than or equal to c.

Of course, this isn’t much of a problem as far as the chair is concerned
— a little compensation for having to send and read all those e-mail
messages.

1. The Mechanism Design Problem

Now we consider the mechanism design problem in a more abstract
setting. Consider a set N of n agents and a mechanism designer
(denoted agent 0). The designer ultimately selects a policy x ∈ X.
Each agent has a private type θi ∈ Θ, with the joint type vector θ
drawn from the joint distribution function F (θ). Agents also have
Bernoulli utility functions ui(x, θ) : X × Θn → R1 that depend on
the chosen policy and the agents type. The mechanism designer has
a Bernoulli utility function u0(x, θ). In many application agents care
only about their own type, but we allow agent’s payoffs to be a function
of the entire profile. The primitives of a mechanism design problem
are therefore hΘ, F (θ),X, ui .
In a typical application, the mechanism designer will elicit a public

vector of signals from the agents. The designer chooses a message space
for each agentMi and a policy function p(m) :

Y
i∈N

Mi → X, that selects

a policy for every possible profile of messages m = (m1,m2, ....,mn) ∈
M =

Y
i∈N

Mi. Accordingly a mechanism is a pair hM, p(·)i.

For a given choice of message spaces and policy function, the n
agents play the Bayesian normal form game with the strategy sets
Si =Mi and payoffs given by the composition of u and p, ui(p(m), θ).
It is straightforward to see how the espresso mechanism maps into

this general framework.. Clearly, the chair is the designer who selects

the message spaceM =Θ and implements the policy “buy if
nX
i=1

mi ≥ c
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and charge c −
X
j 6=i

mj to agent i.” The faculty members then play a

Bayesian normal form game with strategies and payoffs determined by
the chair’s choices.
Given a mechanism, determining how agents will behave requires

specifying a form of rationality. One possibility is to make predictions
only if the agents have dominant strategies in the induced game. These
are known as dominance solvable mechanisms. Alternatively, we could
assume that agents select a Bayesian Nash equilibrium. Clearly, the
question of how well the mechanism performs rests on assumptions
about how the agents play the induced game.
In this chapter we will focus on Bayesian Nash equilibria. A large

literature exists in economics using other solution concepts. For ex-
ample, the Groves-Clarke mechanism originated in literature on imple-
mentation in dominant strategies.. Given the focus on Bayesian Nash
equilibria, we wish highlight the types of choice functions g : Θ → X
that satisfy the following condition: there exists a mechanism hM,p(·)i
such that if agents play a Bayesian Nash equilibria to the mechanism
then the final outcome corresponds to the policy that would be selected
by the choice function, p(m(θ)) = g(θ).
From the mechanism designer’s perspective the mechanism is in-

strumental to achieving a particular choice function. If the designer
wishes to implement the function g(θ) in Bayesian Nash strategies then
she must select a mechanism hM,p(·)i such that in the corresponding
game has a Bayesian Nash equilibrium in which the agents use strate-
gies m∗

i (θi) so that p(m
∗
1(θ1),m

∗
i (θi), ...,m

∗
n(θn)) = g(θ). Thus the

choice of a mechanism is informed by knowledge of the incentives the
mechanism creates, and the designer anticipates how these incentives
will shape behavior by anticipating that agents will play equilibrium
strategies to the mechanism.

Definition 11.1. Given a mechanism design problem hΘ, F (θ), X, ui
we say the choice function g(θ) is implementable in Bayesian Nash
strategies if there exists a mechanism hM,p(·)i which has a Bayesian
Nash equilibrium m∗

i (·) in which p(m∗
1(θ1),m

∗
i (θi), ...,m

∗
n(θn)) = g(θ)

for every θ ∈ Θ.

If a game is dominance solvable, the surviving strategy profile will
be a Bayesian Nash equilibrium. This means that given a mechanism
design problem the set of choice functions which are implementable in
dominant strategies is a subset of the set of choice functions which are
implementable in Bayesian Nash strategies.
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Our first result, the so-called revelation principal, dramatically sim-
plifies the search for choice functions which are implementable by al-
lowing us to focus on a smaller set of possible mechanisms. Direct
mechanisms are mechanisms in which the agents are asked to report
their types directly. Thus, direct mechanisms have Mi = Θi. The
revelation principal says that if there exists a mechanisms to implement
choice function g(θ) then there must exist direct mechanism that im-
plements g(θ). This powerful result tells us that we need not consider
all possible mechanisms just the direct ones.
While revelation principal is quite general, its proof is very straight-

forward. It can also be extended to a very large class of equilibrium
concepts.

Proposition 11.1. (Revelation Principal in Bayesian Nash strate-
gies). Given a mechanism design problem hΘ, F (θ), ui , if the choice
function g(θ) is implementable in Bayesian Nash strategies then there
exists a direct mechanism hΘ, p(·)i that implements g(θ) in Bayesian
Nash strategies.

Proof. We begin by assuming that there is a non-direct mecha-
nism hM, p0(·)i that implements g(θ) in Bayesian Nash strategies. We
use this mechanism to construct a direct mechanism that also imple-
ments the choice function g(θ). Let si(θi) denote the strategy that
player i deploys in one of the Bayesian Nash equilibria to the game
induced by hM,p0(·)i . Consider the direct mechanism in which agents
are asked to announce messages mi ∈ Θi and then the policy is cho-
sen by the function p(θ) = p0(s1(θ1), ..., si(θi), ..., sn(θn)). We need
only verify that under the direct mechanism, truthful announcements
of mi(θi) = θi form a Bayesian Nash equilibria. First, suppose that all
agents N\i are playing truthful strategies. If agent i also uses a truth-
ful strategy then the final outcome will be g(θ). Now suppose that
there is a desirable deviationm0

i 6= θ0i in the direct mechanism for agent
i with type is θ0i ∈ Θi. If agent i can selectm0

i in the direct mechanism,
it must be the case that m0

i ∈ Θi. However, since si(·) : Θi → Mi in
the game induced by hM,p0(·)i,it must be the case that si(m0) ∈ Mi

exists. This implies thatZ
θ−i∈Θ−i

ui(p
0(s1(θ1), ..., si(m

0), ..., sn(θn))dF (θ−i | θi) >Z
θ−i∈Θ−i

ui(p
0(s1(θ1), ..., si(θ

0
i), ..., sn(θn))dF (θ−i | θi)
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This expression contradicts the fact that si(·) is a best response in the
Bayesian game induced by hM,p0(·)i . Thus we have established the
result. ¤
One cautionary note is in order. We focus only on the existence

of a mechanism which implements a choice function as the outcome
of Bayesian Nash Equilibrium. Clearly, there may be other equilib-
ria to the Bayesian game mechanism that result in different collective
choices.
Given the revelation principal, the question of whether a particular

choice function is implementable can be answered by focusing on truth-
ful direct mechanisms. If a choice function cannot be implemented by
such a mechanism, it cannot be implemented by any mechanism.
We now consider a few examples before returning to the develop-

ment of the theory.

2. Applications

2.1. Polling. Suppose that there are N = {1, 2, .n} (n odd —not
surprisingly) voters with symmetric single-peaked preferences on R1.
The mechanism designer does not know the agent’s ideal points but she
may ask each voter a question and then select a policy x ∈ R1. Each
ideal point θi is drawn from a distribution F (·) on R1. The natural
question to ask is whether there are any mechanisms that induce the
agents to reveal their ideal points in dominant strategies. The answer
is yes. Consider the mechanism that asks each agent to announce
their ideal point mi ∈ R1 and then chooses policy equal to the median
announcement, x(m) = median(m). To see that truthful response
is a best response, consider a respondent with ideal point yi. Let
x(mi,m−i) denote the median of the profile of messages that includes
mi and the responses of the other n − 1 respondents. Further, let
x(m−i) and x(m−i) be the lower and upper of median(m−i).2

Suppose that agent i reports yi. If yi < x(m−i), then x(m−i) be-
comes the median report so that x(yi,m−i) = x(m−i). Similarly, if
yi > x(m−i), x(yi,m−i) = x(m−i). Finally, if yi ∈ [x(m−i), x(m−i)],
yi is the median report so that x(yi,m−i) = yi. Thus, the deviation
to yi can result in only three types of outcomes x(m−i), x(m−i),and
yi ∈ [x(m−i), x(m−i)] .
Clearly, the defection cannot pay in the state of the world where

if θi ∈ [x(m−i), x(m−i)] since she obtains her ideal point by reporting
mi = θi. So suppose that θi < x(m−i). Now agent i’s best feasible

2Recall that if a set of real numbers has an even number of distinct elements,
it has two medians.
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outcome is x(m−i) which can be obtained by any message less that
x(m−i) which includes θi. Similarly, if θi > x(m−i), announcing mi =
θi weakly maximizes her utility. We have thus seen that regardless of
the responses of the other players, agent i’s best strategy is to announce
mi = yi.
Relating this example back to the Gibbard-Satherwaite Theorem

of chapter 4, Herve Moulin (1980) obtained a mechanism design ana-
logue to results about the existence of preference aggregation rules
that do not violate the Arrow’s conditions when preference are single-
peaked. Moulin focused on mechanisms in which respondents are asked
to announce a number (interpreted as their ideal point) and set up a
small number of criterion, anonymity and efficiency. The first condi-
tion anonymity requires, simply, that the mechanism treat individuals
identically.

Definition 11.2. A mechanism g : Rn → X is anonymous if for
any permutation π : N → N, g(m1, ..,mi, ..,mn) = g(mπ(1), ...,mπ(i), ...,mπ(n)).

The efficiency condition is essentially identical to Arrow’s Pareto
condition.

Definition 11.3. A mechanism g : Rn → X is efficient, if for
every profile of types y = (y1, ..., yn) g(y) is Pareto efficient, that is
there is not some other policy z 6= g(y) such that every agent weakly
prefers y to g(y) and some agent strictly prefers y to g(y).

Moulin showed the following result.

Proposition 11.2. If preferences are single-peaked then every ef-
ficient, and anonymous, strategy proof mechanism is of the following
form: Take the announcements m1,m2, ....mn and add k fixed numbers
a1, ..., ak, and select the median of this longer list, x(m, a).

We have already sketched out the argument for why such a mech-
anism is strategy-proof. The proof of Moulin’s result is left as an
exercise.

2.2. Auctions. Because of the role of auctions in allocating every-
thing from broadcast spectra to chatchas on E-Bay, economists have
developed large body of theory both on how optimally structure auc-
tions to generate maximal revenue and to achieve allocative efficiency.
While political scientists are generally not concerned with those issues,
we present some of the basics of auction theory for a couple of reasons.
First, several important aspects of politics can be thought of as par-
ticular types of auctions. Second, auction theory demonstrates how
mechanism design can be used to study the choice of institutions.
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However, it is not that auction theory has been ignored in political
science. A classic application of auction theory are models of favor-
buying in which competing interest groups offer bribes to secure public
contracts or policy concessions from politicians. Recently one of us
has argued for modeling electoral competition as a form of an auction
(Meirowitz 2004).
The standard auction problem involves a seller (agent 0) and a

population of potential bidders, N = {1, .., n}. Each bidder places
a valuation of θi ∈ R1+ on the item to be sold. These valuations
are the private information of each buyer. We assume for simplicity
that the common prior is that bidder valuations are independent and
identical draws from a twice differentiable distribution function F (·).
The utility to a bidder i that has valuation θi and wins the item by
paying bi is just θi − bi. The payoff to losing bidders is 0. We begin
with a few commonly studied auction mechanisms.
2.2.1. Second Price and Ascending Price Auctions. Consider two

auction designs. In a second price auction, each participant submits a
sealed bid bi and the one who bids the highest wins the object. How-
ever, the winner the amount equal to the second highest bid. In an
ascending price auction, all participants begin with their placards up,
and the auctioneer announces an ascending sequence of prices, $10,
$11, $12,..... When a price is announced causing the second to last
placard to fall, the item is sold to that bidder with the upright placard
at the announced price.
Both of these auctions are commonly used and the experience of

bidding under these schemes may seem quite different. Nonetheless,
from a game-theoretic perspective the mechanisms are identical. Note
that the auctions induce different games (one is a Bayesian game with
simultaneous moves and the other is a Bayesian game with sequential
moves). Nonetheless, the incentives are identical. To see this imagine
that each bidder entered their valuation θi into a computer and the
computer did two things: (1) it submitted the valuations into a second
price auction, i.e. it uses strategy bi = θi. (2) it has a robot play the
following strategy in an ascending price auction -hold the placard up
until the announced price exceeds the valuation, θi. In both cases
the bidder with the highest valuation would win the item and pay the
second highest price.
It is easy to see that in the second price auction bidding bi = θi

is a dominant strategy. Consider any other bid bi 6= θi. Let bmax−i =
maxj 6=i bj denote the highest bid submitted by all the other agents.
There are three possibilities, either bmax−i = θi, b

max
−i < θi or bmax−i > θi.

In the first case use of the strategy bi = θi will result in a ties (which
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has expected utility equal to 0). The strategy bi > θi will result in
victory but at the price bmax−i = θi which results in utility of 0. Finally
under the strategy bi < θi you do not win the item and receive utility
of 0. In the second case, under the strategy of bi = θi you win and
pay bmax−i receiving payoff θi − bmax−i > 0. Under the strategy bi > θi
you win and also pay bmax−i again receiving payoff θi − bmax−i . Under the
strategy of bi < θi you do not win and receive a payoff of 0. In the last
case, under the strategy of bi = θi you do not win and receive payoff
of 0. Under the strategy bi > θi you either win and pay bmax−i for an
item that you only value at θi < bmax−i and thus you receive a negative
payoff, or you do not win and receive a payoff of 0. Thus the strategy
of bi = θi does at least as well as any other strategy and avoids two
types of regret: not winning an item at a price you would be willing to
pay and winning an item at a price that you do not want to pay.
Similarly, lowering the placard once the price exceeds θi is a dom-

inate strategy in the ascending price auction. Is there a reason to
lower the placard before the price reaches θi? Doing so insures that
you do not win the item, thus this deviation results in a payoff of 0.
Thus,early resignation cannot do better than the conjectured strategy
of lowering the placard at a price equal to θi. Moreover, if it is the
case that all other agents will lower the placard by a price p0 < θi than
the conjectured strategy would result in victory at a price of p0 and
utility θi − pi. Now consider the potential consequences of deviating
to a strategy of keeping the placard up after the price exceeds θi. In
this case either you are not the winner and you receive a utility of 0 or
you are the winner and you pay a price p00 > θi to win an object worth
θi resulting in a negative payoff.
We now consider different types of auctions.
2.2.2. First Price and Descending Price Auctions*. In a first price

auction, agents simultaneously submit bids and the highest bidder wins
the object and pays her bid. In a descending price auction each bidder
has a placard and the auctioneer begins with a high price and lowers
it as the auction progresses $100, $99, $98,.... The bidder that raises
her placard first wins the item and pays the most recent price. As
before the simultaneous move and extensive form versions of the game
are similar. We focus only on the analysis of the first price auction,
leaving as an exercise the construction of a subgame perfect equilibrium
to the descending price auction. We follow Krishna (2002) and present
an informal derivation of the equilibrium strategies. We begin with a
conjecture about equilibrium strategies and verify that the conjecture
turns out to be consistent with a PBE.
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Suppose that bidders j 6= /i have strategies that are represented by
the differentiable and strictly increasing function b(θ). Since a bidders
expected utility is 0 if she pays her valuation or loses given the random
variable bmax−i the expected utility to a bidder with type θi from using
strategy bi is

pr(bmax−i < bi) [θi − bi] .

Since we have assumed that the other bidders use the strategy b(θ),
the term pr(bmax−i < bi) is just the probability that n − 1 draws of θj
from F (·) each have values lower than b−1(bi). Given the independence
of types the expression for this probability is just F (b−1(bi))n−1. Ac-
cordingly, the expected utility is

F (b−1(bi))
n−1 [θi − bi] .

An optimal bi must solve the first order necessary condition

(n− 1)F (b−1(bi))n−2f(b−1(bi))
db−1(bi)

dbi
[θi − bi]− F (b−1(bi))

n−1 = 0

In the conjectured equilibrium b(θi) = bi and thus we have

(n− 1)F (θ)n−2f(θ)θ = db(θ)

dθ
F (θ)n−1 + (n− 1)F (θ)n−2f(θ)b(θ)

Note that the right hand side is d
dθ
(F (θ)n−1b(θ)) allows us to re-express

the above as
d

dθ

¡
F (θ)n−1b(θ)

¢
= (n− 1)F (θ)n−2f(θ)θ

The first theorem of calculus allows us to re-express this as

(11.1) b(θ) =

R θ
0
θ0(n− 1)F (θ0)n−2f(θ0)dθ0

F (θ)n−1

which is the conditional expectation of bmax−i given that bmax−i < θ. Verify-
ing that this is in fact an equilibrium amounts to determining whether
the local extrema characterized by equation 11.1 is in fact a global
maximum. We leave this as an exercise.
2.2.3. The Revenue Equivalence Principle*. We see that the first

price and second price auctions result in different strategies. Given
this, a natural question is which auction the seller would prefer to use.
This question is answered by a fundamental result in auction theory, the
revelation equivalence principal (Riley and Samuelson 1981; Myerson
1981). This principal guarantees that when the types are independent
the expected revenue of an auction depends only on the probability
that a seller wins as a function of her type θi and the utility realized by
the seller from the lowest possible type. An immediate consequence of
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this result is that, assuming independent evaluations, all of the above
auctions yield the same expected revenue to the seller. In this section
we develop this logic.
Returning to the notation from the beginning of this chapter, let

M = Θ denote the space of possible messages. We assume that each of
the n players have a valuation which is an independent draw from the
differentiable distribution F (·) on Θ with density f(·). For convenience
we assume that Θ is an interval of the form [0, k]. By ∆(N) we
denote the set of lotteries over the bidders N. Let w(m1, ....,mn) :
Mn → ∆(N) and t(m1, ....,mn) :M

n → Rn
+ denote a mechanism which

specifies for each profile m of messages a lottery over the identity of
the winner and a profile of transfers. Thus, the first price auction has
winner

w(m) =

½
1 if i = argmax{mj}

0 otherwise

and transfers

ti(m) =

½
mi if i = argmax{mj}

0 otherwise.

An all-pay, first-price auction (which we analyze below) has ti(m) =
mi. The subject of the revenue equivalence result is that the expected
revenue generated by Bayesian Nash play in the auction. Standard
auctions have the “winner takes it with certainty” mapping g(m) de-
fined above. Given an increasing bid function b(θi) the expected
revenue is ER =

Pn
i=1

R k
0
ti(b(θi))dF (θi).We can now state the result.

Theorem 11.1. Assume valuations are independently and identi-
cally distributed. In every standard auction, every symmetric and
increasing equilibrium in which the expected payment of a bidder with
value 0 is 0 yields the same value of ER.

Proof. We consider a fixed standard auction, and symmetric and
increasing equilibrium characterized by the function b(·).Let t+(θi) de-
note the expected payment of a bidder with value θi. Suppose that
bidder i’s valuation is θ0i and consider the bid z = b(θ00i ). When all other
bidders use the strategy b(·) the expected utility of bid z to bidder i is

θ0iF (θ
00
i )

n−1 − t+(θ00i )

Differentiating this expected utility with respect to the type θ00i yields
the first order condition

(n− 1)θ0if(θ00i )n−2 =
∂t+(z)

∂z
|z=θ00i
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Since b(·) is an equilibrium it must be the case that z = b(θ00i ) = b(θ0i)
solves this condition, yielding

(n− 1)θ0if(θ0i)n−2 =
∂t+(z)

∂z
|z=θ0i .

But this differential equation yields the solution

t+(θ0i) = t+(0) +

Z θ
0
i

0

(n− 1)θ0if(θ0i)n−2dθ0i.

Thus under the assumption that t+(0) = 0 we have t+(θ0i) =
R θ0i
0
(n −

1)θ0if(θ
0
i)
n−2dθ0i which does not depend on the details of the auction.

Since

ER =
nX
i=1

Z k

0

ti(b(θi))dF (θi) = n

Z
t+(θ0i))f(θ

0
i)dθ

0
i.

this completes the proof. ¤
2.2.4. Contests and All-Pay Auctions*. An all-pay auction requires

that contestants pay their bids regardless of whether they win. Many
contests take this form. Two examples of interest in political science
are models of interest group influence in which special interests pay
bribes and the group that makes the largest payment receives a pol-
icy and electoral campaigns in which candidates compete for office by
mounting costly campaigns. We develop this second application in
some detail. We use the revenue equivalence principle to reach some
interesting conclusions.
Consider a pool of candidates, C = {1, 2, ...., c}. Each candidate

has a non-negative real-valued type θp ∈ R1+ that corresponds to their
overall efficiency at governing. The social goal is to select the most
efficient candidate p∗ = argmaxp∈C θp. We assume that the quality
types θ = (θ1, ...., θc) are private information — only candidate p knows
θp. For simplicity we assume that types are independent and identical
draws from the distribution F (·) with density function f(·). LetMc =
max{θj}j 6=1 denote the maximum type from c − 1 draws of θ. Given
θp the probability that Mc ≤ θp is Fc(θp) ≡ F (θp)

c−1. Differentiating
yields the density of Mc, fc(θp) = (c− 1)F (θp)c−2f(θp).
Our baseline model of an election involves two periods. In the

first period each candidate simultaneously selects a level of campaign
effort ap. In the second period the candidate with the highest level of
effort wins office. The key assumption is that a candidate’s cost of
campaign effort is decreasing in her governing efficiency. That is, we
assume that if candidate 1 has a lower cost of campaign effort than
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candidate 2, candidate 1 is likely to be a more effective leader than is
candidate 2. For simplicity, we consider the case where campaigning
costs are inversely proportional to efficiency, thus βp =

1
θp
. Candidate

payoffs are then

(11.2) Eu(ap, θp) =

⎧⎪⎨⎪⎩
1− ap

θp
if ap > maxj 6=p{aj}

−ap
θp
if ap < maxj 6=p{aj}

1
#{j:aj=ap} −

ap
θp
if ap = maxj 6=p{aj}

where the last line of the expression follows from assuming that ran-
domization is used in case of ties. Note that multiplying each candi-
dates’ utility function by θp translates this payoff function into that of
a standard all-pay auction where the prize has value θp and bids have
unitary cost.3 We now characterize a symmetric pure strategy equi-
librium in which a candidate’s effort level is a strictly increasing and
differentiable function of her efficiency type θi. If each player is using
a strictly increasing and differentiable strategy α(θ) then candidate p
with type θp that selects effort ap has expected utility

(11.3) π(ap, θp) = F (α−1(ap))
c−1 − ap

θp

In order for ap to be optimal it must solve the first order condition

(11.4) (c− 1)F (α−1(ap))c−2f(α−1(ap))
dα−1

dap
=
1

θp
.

In a symmetric equilibrium it must be the case that α(θp) = ap, so that
α−1(ap) = θp. Thus the condition reduces to

(11.5)
dα−1

dap
=

1

θp(c− 1)F (θp)c−2f(θp)
.

This means that

(11.6)
dα

dθ
= θp(c− 1)F (θp)c−2f(θp).

Integration yields the required solution,

α(θ) =

Z θ

0

x(c− 1)F (x)c−2f(x)dx(11.7)

=

Z θ

0

xfc(x)dx.

This function is strictly increasing in θ so it remains only to verify that
this solution satisfies the sufficient second order condition. This result

3See for example Milgrom and Weber (1985) for results on standard auction
models.
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follows form Theorem 2 of Krishna and Morgan (1997) so we do not
reproduce the proof.

Proposition 11.3. In the basic model a symmetric equilibrium in
which accumulations α(θ) are strictly increasing in efficiency exists.
In this equilibrium the best candidate p∗ = argmaxp∈C(θp) is chosen
with probability one.

A few comments are in order. First a(θi) < θi.

Conclusion 1. The winning candidate achieves a strictly positive
payoff.

Second, as a function of c the effort strategies have derivative

∂α(θ)

∂c
=

Z θ

0

x(c− 1) ln(F (x))F (x)c−2f(x)dx

which is negative as F (x) ≤ 1. Thus for c < c0 we have αc(θ) > αc+1(θ)
where αn(θ) denotes the equilibrium effort function when c = n.

Conclusion 2. Candidate efforts are decreasing in the number of
candidates.

Third, since the model is equivalent to a first-price all-pay auction
with independent values and α(0) = 0, the revenue equivalence princi-
ple proven above implies that he expected total amount of effort

Ac = c

Z ∞

0

α(x)f(x)dx

must be the same as the expected payment of the winner in a second
price auction in which player values are drawn from f(·). This value
is just the expected value of of the second highest of c draws from f(·)
which is Z ∞

0

xc(c− 1)(1− F (x))F (x)c−2f(x)dx.

which is increasing in c.

Conclusion 3. The total effort is increasing in the number of can-
didates

It is reasonable to think that the social objective is maximization
of θp∗c . If in addition the actual effort of campaigning is viewed as
wasteful then it is natural to think that the social objective involves

a trade-off between increasing Eθp∗c and decreasing E
cX

p=1

α(θp)
θp

where

E is the expectations operator. Letting v(·) and u(·) denote twice
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differentiable increasing functions with v00 < 0 and u00 > 0, it is natural
to consider a social welfare function of the form

Vc = Ev(θp∗c )− Eu
Ã

cX
p=1

α(θp)

θp

!
.

While the all-pay auction aspect of campaigns does an excellent job
selecting the best quality candidate, unlike a typical auction where the
bidding is viewed as revenue to the seller, in the campaign context the

costs
cX

p=1

α(θp)
θp

are not desirable. This perspective motivates a natural

question. How does one select good candidates while not inducing
excessive wasteful campaigning? In the next section we demonstrate
that one answer to this question involves imperfect voting—a phenom-
ena that many believe is empirically reasonable.
The baseline model assumes that elections are perfect screening

devices selecting the candidate that selects the highest level of a. In
reality voting is imperfect, and candidates likely recognize this. In this
section we consider elections with a random decision. For simplicity
assume that the candidate with the highest level awins with probability
q + 1−q

c
and that the remaining candidates win office with probability

1−q
c
. To be sure a large number of other models of probabilistic selection

can be incorporated. In this setting the candidate payoffs are then

(11.8) Eu(ap, θp) =

⎧⎪⎨⎪⎩
q + 1−q

c
− ap

θp
if ap > maxj 6=p{aj}

1−q
c
− ap

θp
if ap < maxj 6=p{aj}

q
#{j:aj=ap} +

1−q
c
− ap

θp
if ap = maxj 6=p{aj}

If each player is using a strictly increasing and differentiable strategy
α(θ) then candidate p with type θp that selects accumulation ap has
expected utility

(11.9) π(ap, θp, q) = qF (α−1(ap))
c−1 − ap

θp
+
1− q

c

In order for ap to be optimal it must solve the first order condition

(11.10) q(c− 1)F (α−1(ap))c−2f(α−1(ap))
dα−1

dap
=
1

θp
.

In a symmetric equilibrium it must be the case that α(θp) = ap, so that
α−1(ap) = θp. Thus the condition reduces to
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(11.11)
dα−1

dap
=

1

θpq(c− 1)F (θp)c−2f(θp)
.

This means that

(11.12)
dα

dθ
= θpq(c− 1)F (θp)c−2f(θp).

Integration yields the required solution,

α(θ; q) =

Z θ

0

xq(c− 1)F (x)c−2f(x)dx(11.13)

= q

Z θ

0

xfc(x)dx

= qα(θ; 1).(11.14)

Accordingly, when the election is imperfect, each candidate shades
down her effort and the efforts are proportional to the imperfection
parameter q.
For the remainder of this section we will focus on two candidate

contests and consider the optimal level q ∈ [0, 1]. In this case the
strategies are

α(θ; q) = q

Z θ

0

xf(x)dx.

The social welfare associated with q is

V (q) = q

∞Z
0

v(x)2F (x)f(x)dx+ (1− q)

∞Z
0

v(x)2(1− F (x))f(x)dx

−
Z ∞

0

u

µ
2q

θ

Z θ

0

xf(x)dx

¶
df(θ)

The optimal value q satisfies the first order condition

∞Z
0

v(x)F (x)f(x)dx−
∞Z
0

v(x)(1− F (x))f(x)dx =

Z ∞

0

µ∙
1

θ

Z θ

0

xf(x)dx

¸
u0(
2q

θ

Z θ

0

xf(x)dx)

¶
f(θ)dθ
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The optimal value q∗ is less than 1 if

∞Z
0

v(x)F (x)f(x)dx−
∞Z
0

v(x)(1− F (x))f(x)dx <

Z ∞

0

µ∙
1

θ

Z θ

0

xf(x)dx

¸
u0(
2

θ

Z θ

0

xf(x)dx)

¶
f(θ)dθ

and greater than 0 if

∞Z
0

v(x)F (x)f(x)dx−
∞Z
0

v(x)(1− F (x))f(x)dx >

Z ∞

0

µ∙
2

θ

Z θ

0

xf(x)dx

¸
u0(0)

¶
f(θ)dθ

Accordingly, if v(·) is relatively flat and u(·) is relatively steep then
then imperfect elections are efficiency enhancing. When v and u are
linear the first order condition does not depend on q and the optimal q is
either 1 or 0, as it is either efficient to maximize the probability that the
best candidate serves or to minimize the campaigning costs depending
on which effect has a larger marginal impact on social welfare.

3. Incentive Compatibility and Individual Rationality

In the contribution and polling examples, we considered mecha-
nisms for which truthfully reporting one’s type was a best response.
While the revelation principal tells us that focusing on direct mech-
anisms will not limit the choice functions that we can implement, it
is silent about what types of choice functions are implementable. In
the next two sections we consider this question. From the revela-
tion principal, we know that we need only focus on direct mechanisms.
Consequently, the question becomes “which types of mechanisms will
induce agents to be truthful?” In a direct mechanism agents are asked
to report their private information type, and then this information is
used to make a decision. Incentive compatibility is the requirement
that given the mechanism and the belief that all other agents are being
truthful, agent i prefers being truthful to lying.
We begin with the general problem. Consider a problem with

agents N, choice space X, type space Θ, prior joint density function
over types f(θ), and state-contingent utility functions ui(x, θ) for each
i ∈ N. A direct mechanism is a mapping p(θ) : Θ→ X. In order for
there to be a Bayesian Nash equilibrium with truthful strategies to the
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game that the mechanism induces the following Incentive compatibility
condition must be true:

Definition 11.4. (Incentive Compatibility condition) For every i ∈
N and every θi ∈ Θi

(IC)Z
Θ−i

ui(p(θi, θ−i), θi)f−i(θ−i)dθ−i ≥
Z
Θ−i

ui(p(θ
0
i, θ−i), θi)f−i(θ−i)dθ−i

for every θ0i ∈ Θi.

Informally, the condition requires that truthful messages are a best
response if everyone else is using truthful messages. We now focus on
gaining additional leverage on the types of mechanisms p(·) that can
satisfy this condition. The easiest way to ensure that the IC is satisfied
is to make

R
Θ−i

ui(p(mi, θ−i), θi)f−i(θ−i)dθ−i constant in mi.
Consider the following example. Let ω is a random state vari-

able that effects the players payoffs from various policies. Assume
that n ≥ 3 agents observe ω so that θi = ω with probability. The
mechanism designer’s job can implement a choice function x(ω) which
maps a profile of messages into policies x in the following simple type
of mechanism

p(θ) =

½
x(ω0) if #{j ∈ N : θj = ω0} ≥ n− 1

x(w∗) otherwise

where #{j ∈ N : θj = ω0} denotes the number of individuals announc-
ing θj = ω0 and w∗ is an arbitrary value of ω. Since a single defection
does not alter the policy choice, this mechanism satisfies incentive com-
patibility.
The mechanism in the above example, however, does not lead to

a strong incentive to be truthful. In the auction example incentive
compatibility is satisfied by a second price auction as (ignoring ties),

ui(p(mi, θ−i), θi) =

½
θi −maxj θj if mi > maxj θj

0 otherwise

is constant in mi if mi > maxj θj and constant in mi for mi < maxj θj.
The non-constant part of the function jumps from 0 to θi − maxj θj
which is positive only ifmi > maxj θj. In contrast the first price auction
is not incentive compatible.
To generate some intuition for incentive compatibility conditions

we return to the coffee machine problem. Consider an arbitrary trans-
fer schedule ti(mi.m−i) which maps a message profile into an amount
charged to member. Let p(m) be a policy function which maps the
message profile into the probability that coffee maker is purchased..
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Given this transfer schedule, the expected utility to department mem-
ber i from announcement mi is

Eu(mi, θ−i) ≡
Z
[θip(mi, θ−i)− ti(mi, θ−i)] f−i(θ−i)dθ−i

If we assume that p and t are differentiable functions, incentive com-
patibility requires that mi = θi maximize Eu(mi, θ−i). Therefore,
we require that a local incentive compatibility condition based on the
first-order condition for maximization:

∂Eu(mi, θi)

∂mi
|mi=θi= 0.

Interchanging the order of integration and differentiation in our
example leads to the condition

θi

Z
∂p(mi.θ−i)

∂mi
f−i(θ−i)dθ−i |mi=θi=

Z
∂t(mi.θ−i)

∂mi
f−i(θ−i)dθ−i |mi=θi

Intuitively, this means that an incentive compatible mechanism requires
that the expected decrease in transfers associated with a slight under
reporting of θi is exactly offset by the reduction in the expected likeli-
hood of coffee maker purchase—weighted by the value of the purchase
θi.
While incentive compatibility requires that players be willing to

reveal their private information, we also require that participants be
willing to play the game. Analysis of these constraints is somewhat
simpler and ad hoc. The key intuition is players will rationally partici-
pate only if she gets a higher payoff in equilibrium that her payoff from
not participating. In some settings, these constraints can be trivial as
it is reasonable to assume that agents have no choice but to participate.
In settings where the constraints are taken seriously, it is necessary to
be explicit about the value to players of not participating. Formally,

Definition 11.5. (Individual Rationality constraint) if the value to
a player from not participating in the mechanism is give by vi(θ, θ−i)
and the value to being truthful in a direct mechanism is ui(θi, θ−i) thenZ

ui(θi, θ−i)dF (θ−i) ≥
Z

vi(θi, θ−i)dF (θ−i)

for all θi ∈ Θi for each i ∈ N.

4. Constrained Mechanism Design

Classical mechanism design allows the planner to commit to one of a
large number of mechanisms. Incentive compatibility, and potentially
individual rationality are the only constraints. In many settings of
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political science the ability to commit is considered unreasonable. As
such the choice of mechanisms is somewhat limited. Restrictions in-
clude an inability to provide transfers, and limits on the potential com-
mitments that can be made. The remainder of this section develops
some examples that illustrate how political scientists use constrained
mechanism design to address problems of institutional design. With
few exceptions, the models in political science are within principal-
agent paradigm. This means nothing more than the recognition that
there is a principal or boss (or several) and an agent or subordinate (or
several). The principal would like to have “good” agents do “good”
jobs and the agents tend to have a desire to keep the principal in the
dark about whether they are of the “good” type or doing a “good”
job. The principal is generally assumed to have a limited number of
possible instruments which he can control. In the language of mech-
anism design, the principal is the planner and doing a “good” job or
revealing whether one is a “good” type corresponds to selecting appro-
priate messages in the context of a direct mechanism. The limited
number of levers corresponds to constraints on the mechanism that
can be enacted. Before turning to some interesting applications, we
demonstrate these concepts in a simple delegation problem.
Suppose there is a principal and two agents. Agents have one of

two possible types θi ∈ {good, bad}. Each agent is a good type with
probability π. In addition if an agent is chosen to perform a task she
can devote one of two levels of effort ai ∈ {high, low}. We suppose that
xi = high imposes a cost of c on the agent while ai = low is costless.
The principal must select one of the two agents to perform a task and
the chosen agent must decide which effort level to choose. The funda-
mental question of principal agent models (or agency models) can
then be phrased as follows. How can the principal design institutions
to select a good type agent (if one exists) and induce the chosen agent
to select high? The former aspect, designing institutions to select good
types is often termed adverse selection. The latter aspect, design-
ing institutions to create incentives for high effort is termed moral
hazard.
If the principal could observe a label on the agent’s shirt that in-

dicated his type, or if the choice of effort were readily observable then
we would say there is no monitoring or observability problem. In this
case, things are not too challenging for our principal. She would simply
hire only good types and fire them when they give low effort. More in-
teresting are situations where agent types are private information and
effort is imperfectly observed. Ferejohn (1986) models accountability
in repeated elections as a principal agent problem. To clarify these
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concepts, we sketch and work through a simplified version of Ferejohn’s
model.
Ferejohn focused only on the moral hazard problem, so for now we

will ignore the different types. There are two identical parties that can
serve in office. Suppose that the in government party selects an effort
level, but the voters observe a noisy policy outcome x ∈ {high, low}
that has the following form. If a = high then x is high with probability
q > 1

2
and low with probability 1 − q; if a = low then x is low with

probability q and high with probability 1 − q. Finally, suppose the
government party receives a rent r from being in office each period and
discounts the future with discount rate δ. The opposition party gets
a payoff of zero for each period it is out of power.
The voter gets to select a reelection rule specifying which values of

x will result in the decision to reelect the incumbent and which values
of x will result in removal. Can she select such a rule that creates
incentives for the government to always select a = high? One simple
rule would be to retain if x = high and replace otherwise. If the voter
uses this rule in every period, then the government party faces a simple
decision problem. If it selects a = high in the current period then her
expected utility is

(11.15) r − c+ qδVI + (1− q)δVO

where VI is the value of the game starting next period if the party is
in office at the beginning of next period, while VO is value of the game
starting next period if the party is out of office at the beginning of next
period.4 If the government selects a = low then her expected utility is

(11.16) r + (1− q)δVI + qδVO

If the voter’s rule works so that is the incumbent finds it best to select
a = high in every period, then we also have

VI = r − c+ qδVI + (1− q)δVO

and
VO = (1− q)δVI + qδVO

which imply that

(11.17) VI =
r − c+ cqδ − qrδ

2qδ2 − δ2 − 2qδ + 1
.

and

(11.18) VO =
rδ − cδ + cqδ − qrδ

2qδ2 − δ2 − 2qδ + 1
.

4See chapter 3 for a discussion of Bellman equations and value functions.
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A version of incentive compatibility (for all governments to select a =
high, ) requires that equation 11.15 is no less than equation 11.16. We
can write this incentive constraint as

(11.19) VI − Vo ≥
c

(2q − 1)δ .

Substituting equations 11.17 and 11.18 leads to the condition

(11.20) r − c− rδ + cδ ≥ c(2qδ2 − δ2 − 2qδ + 1)
(2q − 1)δ

which is necessary in order for the voters rule to induce ai = high
in every period. In other words if the exogenous parameters satisfy
this inequality the moral hazard problem is solvable with the rule that
retains only if x = high. In this setting the voters do not really need to
commit to the rule because the rule represents an equilibrium strategy
given the decision rule that the government officers are using as long
as the voter prefers x = high to x = low. This is true because
all governments will select ai = high and all governments have the
same type (i.e. there is no adverse selection problem). Accordingly,
if the above condition is satisfied then we have characterized a Nash
equilibrium to the game between the two parties and the voter: If in
office select ai = high and when deciding how to vote, retain only if
x = high.
Now we consider an adverse selection version of the problem. Sup-

pose the government does not select an effort level but her type is
private information. For simplicity, we assume that each of the par-
ties has a type that is high with probability π > 1

2
. We assume these

draws are independent. In each period the voter only observes x which
takes the value high with probability z > 1

2
if the government is a high

type and the value of low with probability 1 − z if the government is
a high type. If the government is a low type then x = high with
probability 1 − z and low with probability z. Once again the voter
might try the simple rule: retain if x = high and replace otherwise.
However, this rule runs the risk of throwing out quality governments
who are temporarily unlucky. A better rule uses information from
previous periods. For any finite number of periods ki in which party i
was in office let hi denote the number of these periods in which x was
high. It follows that in ki − hi of those periods we had x = low. The
posterior probability that party i is of type high after hi realizations
of high from ki trials is given by Bayes’ rule as

Pr(θi = high | ki, hi) =
πzhi(1− z)ki−hi

πzhi(1− z)ki−hi + (1− π)(1− z)hizki−hi
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An optimal rule is to keep the original incumbent until Pr(θi = high |
ki, hi) falls below π, the expected quality of party j before it serves.
Then the voter should dump party j as soon as Pr(θi = high | ki, hi) >
Pr(θj = high | kj, hj). Recalling the law of large numbers we see that
this rule will eventually select the optimal party (they may both be
optimal).
This discussion of agency has been meant only as an introduction to

the concepts. We now consider several applications of agency theory
to the study of delegation. The basic concepts of trying to create
incentives to limit moral hazard and trying to select the best agents
are recurrent.

4.1. A Model of Delegation to Bureaucrats. One of the key
questions in the study of the modern administrative state is the trade-
off between political control of an agency and the autonomy that an
agency requires to apply its expertise to policy problems. Principal
agent theory has been a natural approach to this question. Originally
applied in politics to study when and how the U.S. congress delegated
rule-making authority to regulatory agencies, principal agent applica-
tions have spread to many other political systems and to many other
types of political bodies such as political parties and international or-
ganization. In this section, we consider a version of the model that
Epstein and O’Halloran (1994) applied to the study of statutory dele-
gation in the United States.
Suppose that a legislature L is considering how much authority to

delegate to a bureaucratic agency A. We assume that the policy space
X is single dimensional and a subset of R. Each of the n legislators
have quadratic policy preferences with ideal points l1 < .... < ln. The
agency is treated as a unitary actor with quadratic policy preferences
and an ideal point a.
To motivate why L would delegate policy making authority to A

rather than set policy itself, we assume that the members of L are unin-
formed about the consequences of various policy choices p ∈ X whereas
A is fully informed. We model this uncertainty just as Gilligan and
Krehbiel do in their study of legislative committees. We assume that
the policy outcome x is a function of the policy choice p and an error
term ε. To keep things as simple as possible, let x = p − ε. Each
legislator has a common knowledge prior that ε is mean zero and is dis-
tributed according to a distribution function F (ε) with density f(ε).
The agency knows ε with certainty. Thus, this informational struc-
ture captures the idea that bureaucrats are policy experts on whom
legislators rely on to improve policy formulation.
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Rather than solve for the optimal mechanism from the L’s perspec-
tive, we limit the analysis to a very simple mechanism where L chooses
a set of allowable policies P ⊂ X. We assume that the sanction against
an agency who chooses p /∈ P are so large that it never chooses to do
so. Therefore, given a set of allowable policies P and the state of the
world ε, A will choose p to maximize

−(a− p+ ε)2 subject to p ∈ P

Thus, we can see that whenever a+ε ∈ P , the agency can get her ideal
outcome by choosing p = a + ε. When a + ε /∈ P , A will choose the
point in P closest to a+ ε.
Given A’s best response, we turn to the legislature’s choice of P .

While in principle we can allow P to be any subset of X, the following
result establishes that P will always be a closed interval

£
p, p
¤
⊂ X.

Proposition 11.4. P ∗ will always be a closed interval
£
p, p
¤
⊂ X

.

We leave the details of the proof to the reader, but here’s a hint.
Suppose that P has a “hole” in it e.g. P =

£
p, p0

¤
∪ [p00, p] where

p0 < p00. Then whenever p0 < a + ε < p0+p00

2
, A chooses p0 and when

p0+p00

2
< a + ε < p00, she chooses p00. Thus, the policy outcome as a

function of ε will appear as the solid line of Figure 11.1. It is easy to
see the variance in the policy outcome can be lowered by moving p0 and
p00 closer together. Since all legislators are risk-adverse, they would
want to reduce the variance so long as the expected policy outcome
does not change. The hint is over. It is now up to the reader to show
that it is always possible to move p0 and p00 closer together without
changing the mean policy outcome.5

Insert Figure 11.1 Here
Given the proposition, it is clear that the legislature’s collective

choice problem is to choose p and p.and the agency’s best response
function is

p∗ =

⎧⎨⎩ p if a+ ε < p
p if a+ ε > p
a+ ε otherwise

The solid line of Figure 11.1 gives this best response.
A complication arises in modelling L’s collective choice in that

it must decide over two dimensions, the lower bound and the upper
bound. Fortunately, the reader can check that the Plott conditions

5Of course, eliminating holes does not prove that the interval must be closed.
Closedness is required to make A’s best response well-defined.
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will hold so that the majority rule decision will be the P ∗ preferred
by the legislator with the median ideal point lm. To get started, note
that given A’s best response, li prefers the combination of p and p that
maximizes

−
∞Z
p−a

(li − p+ ε)2f(ε)dε−
p−aZ
p−a

(li − a)2f(ε)dε−
p−aZ
−∞

(li − p+ ε)2f(ε)dε

The first order conditions are

∂

∂p
= 2

∞Z
p−a

(li − p+ ε)f(ε)dε = 0

∂

∂p
= 2

p−aZ
−∞

(li − p+ ε)f(ε)dε = 0

Note that whenever li < a, ∂
∂p

< 0 for any finite p. Thus, the optimal
choice is p∗ = −∞. The intuition is that when li < a the agency
always wants a higher policy than legislator i would want if she were
informed. Thus, legislator i never finds it in her interest to constrain
A from choosing low policies. Similarly, if li > a, ∂

∂p
> 0 and p∗ =∞.

Proposition 11.5. The majority rule outcome for P ∗ is the closed
interval

£
p, p
¤
preferred by the legislator with ideal point lm.

Since the majority rule outcome is the median’s ideal statute, the
delegation game becomes one between the agency and legislative me-
dian. Thus, the allowable policies for the agency are given by the
solutions:

p∗ = −∞
∞Z

p∗−a

(lm − p∗ + ε)f(ε)dε = 0

if lm < a and

p∗ = −∞
p∗−aZ
−∞

(lm − p∗ + ε)f(ε)dε = 0

if lm > a.
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Having already discussed why the median legislator will not want to
constrain the agency on one end of the spectrum, consider the intuition
for the expressions for the other constraint. Consider the case where
lm < a. We can re-write the expression for p∗ as

lm =

∞Z
p∗−a

(p∗ − ε)
f(ε)

1− F (p∗ − a)
dε

This condition implies that the expected outcome conditional on A
being constrained has to be at the median legislator’s ideal point. If
this expected outcome were greater than lm, the median could do better
in expectation by further constraining A’s choice to generate lower
policies. Similarly, we can write the condition for p∗ when lm > a as

lm =

p∗−aZ
−∞

(p∗ − ε)
f(ε)

F (p∗ − a)
dε

To generate some more specific results, assume that ε is distributed
uniformly on [−E,E] so that F (ε) = ε+E

2E
and f(ε) = 1

2E
. Then if

lm < a,

lm = p∗ − p∗ − a+E

2
or

p∗ = 2lm − a+E.

We can see that if the agency and the median get closer together (e.g.
by raising lm or decreasing a) then the legislature will pass a more per-
missive statute with a greater upper bound. Intuitively, the legislature
will delegate more authority to an agency that shares its preferences.
Also, when there is more policy uncertainty (e.g. E is larger), the
agency is granted more authority. Thus, when information asymme-
tries are greater, the legislature will be more dependent on the informed
agency to formulate policy.6

4.2. Bureaucratic Capacity. One of the important assumptions
of the Epstein and O’Halloran and most other models of delegation is
that the agency can implement its policy choice perfectly without error.
This may be a reasonable assumption for advanced democracies with

6When lm > a, the solution is p∗ = 2lm − a − E. The reader can verify that
this lower bound is less restrictive when lm and a are close together and when E is
large.
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cadres of professional, highly trained bureaucrats, but it is far less
applicable in many developing states and in earlier historical eras.
To address this issue, Huber and McCarty (2004) develop a model

in which bureaucracies vary in their capacity to implement policies. In
that model, if A attempts to implement policy p, the resulting policy
is ep = p + ω where ω is an implementation error which is assumed to
have mean 0 and variance σ2ω. Bureaucracies with high capacity are
assumed to be better able to implement policies and therefore have
lower values σ2ω. Conversely, low capacity bureaucracies implement
policy with imprecision so that σ2ω is high. LetG(ω) be the distribution
function for ω and g(ω) be the associated density.
Huber and McCarty embed this model of capacity into a delegation

model very similar to that of Epstein and O’Halloran. The legislature
would like to delegate to the agency because the agency is better in-
formed about the consequences of various policy choices. As above,
the agency knows ε but the legislature knows only that it is distributed
uniformly on [−E,E]. They also assume that the members of L and
A have quadratic preferences over policy space X.
The legislature moves first and creates a statute specifying the set of

admissible policies P =
£
p, p
¤
.7 The agency then moves and attempts

to implement policy p which results in policy ep = p− ω and outcome
x = ep−ε. Huber andMcCarty assume that compliance with the statute
requires that ep ∈ P . Thus, even if the agency attempted to comply
i.e. p ∈ P , its implementation errors might lead to non-compliance. Ifep /∈ P, the agency incurs a cost δ as a sanction for non-compliance.8

Unlike the Epstein and O’Halloran model, the agency may actually
choose to be non-compliant. Alternatively, non-compliance could be
purely a result of implementation errors. Since it is assumed that L
cannot observe p, the sanction for non-compliance must be the same
regardless of the ultimate cause. Thus, A will be sanctioned when
p− ω > p or when p− ω < p. Given a choice of p, the probability of
sanction is G(p− p) + 1−G(p− p).
To facilitate the exposition, note that a number of features of the

Epstein-O’Halloran model generalize to this model. First, it can be
shown that the majority rule choice of P maximizes the utility of the
legislator with ideal point lm. We will assume throughout this section

7A note to the industrious reader who refers to the original publication is in
order. In Huber and McCarty, the political principal is a generic politician rather
than a legislature. We have adjusted the nomenclature and notation to paralell
that of our discusion of Epstein and O’Halloran.

8Actually, Huber and McCarty assume that non-compliance is detected prob-
abilitisically. However, our simplification doesn’t alter the results.
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that a > lm. Secondly, we can show in the current model that p∗ = −∞
if a > lm.
Given this setup and the assumption that a > lm, we can write A’s

utility function as9

−
∞Z
−∞

(a− p+ ω + ε)2g(ω)dω − δ [G(p− p)]

= − (a− p+ ε)2 − σ2ω − δ [G(p− p)]

Her first order conditions for a maximum are

2(a− p+ ε)− δg(p− p) = 0

The first term in this expression represents the marginal benefit of
moving the expected policy closer to the agency’s ideal point a. The
second term represents the net marginal cost of increasing the intended
policy in terms of the probability of sanction. Increasing p increases the
probability of p+ω > p by g(p− p). Clearly, A will choose p to equate
the marginal policy benefits with marginal sanction costs. To get an
explicit solution for p∗, Huber and McCarty assume that g(ω) = Ω−|ω|

Ω2
.

This density is “tent-shaped” on the interval [−Ω,Ω] and implies that
σ2ω =

Ω2

6
. Thus, Ω represents a measure of bureaucratic incapacity.

Given these assumptions about functional form, Figure 11.2 plots
the marginal policy benefit curve and the marginal compliance costs for
three values of p as a function of p. The marginal benefit line is the bold
downward sloping line. The marginal policy benefit is independent of
the location of p, and declines as the Bureaucrat’s action approaches
the Bureaucrat’s most-preferred action, a + ε. The marginal cost
curves depend on the location of p, and are depicted in Figure 11.2 by
the three triangles centered at p1,p2, and p3. These triangles represent
the function δg(p−p). If p were too high or too low, the marginal costs
would be zero at the Bureaucrat’s ideal intended action, a + ε. This
would lead the Bureaucrat to choose its ideal action. For non-extreme
statute’s, the Bureaucrat’s best response lies at the intersection of the
marginal benefit curve with the relevant marginal cost curve.10 Given

9The second line follows from a useful fact expected utilities of quadratic func-

tions:

∞Z
−∞

(x+ φ)2 f(φ)dφ = (x−E(φ))2 + var(φ)

10McCarty and Huber assume that Ω2 > δ which guaratees that there is a
unique intersection of the marginal benefit and cost curves and it represents a
global maximum. Given their interest in systems where bureacratic capcity and
the ability to sanction non-compliance is low, this assumption seems reasonable.
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p1, for example, the optimal action is p
∗
1. For any p > p∗1, the marginal

policy benefits of increasing the policy action (toward the Bureaucrat’s
most preferred) exceed the marginal compliance costs, and for any
p < p∗1, the reduction in compliance costs of moving the action away
from the Bureaucrat’s most-preferred action exceed the policy loses.

Insert Figure 11.2 about here

We can see from Figure 11.2 that the effect of changes in p on
the Bureaucrat’s best-response depends on whether the apex of the
“compliance cost” triangle is to the left or right of the policy benefit line
(i.e., to the left or right of p2in Figure 11.2). For p1 < p < p2, p

∗ > p.
In this range, increases in p increase the marginal compliance costs of
any p > p, inducing the Bureaucrat to move toward the Politician’s
ideal point. At p2, however, this effect reverses. For p > p2, p

∗ < p,
and increases in p decrease the marginal compliance cost of any p∗ < p,
inducing the Bureaucrat to adjust his action closer to his ideal point.
Consequently, the minimum action that the politicians can induce is
given by p∗(p2).
Huber and McCarty show that formal solution to the agent’s max-

imization problem is

p∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a+ ε if p− ε ≤ a− Ω

Ω2(a+ε)−δ(p+Ω)
Ω2−δ if a− Ω ≤ p− ε ≤ a− δ

Ω
Ω2(a+ε)−δ(p−Ω)

Ω2+δ
if p− ε ≤ a+ Ω ≤ p− ε ≤ a+ Ω

a+ ε if p− ε ≥ a+ Ω

A few features of A’s best response are worth noting. Notice that for
extreme statutes (p ≤ a−Ω+ε or p ≥ a+Ω+ε), A’s best response is to
attempt to implement her ideal point. This is because if the statute is
too lax or too constraining, the marginal compliance cost at A’s ideal
policy is zero. Secondly, note that lm can only induce policies in the the
interval

£
a− δ

Ω
+ ε, a+ ε

¤
. He cannot induce a lower policy because

A would comply less often under a more restrictive statute. Note that
this minimum policy is increasing in Ω. Thus, lm’s ability to control A
decreases and capacity gets lower. The intuition is that a low capacity
bureaucracy is non-compliant a large part of the time regardless of the
policies it chooses and this probability of non-compliance is not very
responsive to the agencies choices. Therefore, the agency will choose to
implement policies closer to its ideal point since there is little additional
penalty for doing so. Therefore, the model identifies one important
effect of low bureaucratic capacity: bureaucrats are harder to control
through statutes.
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Given their interest in the bureaucratic politics of low-capacity sys-
tem, Huber and McCarty focus on the optimal statute when bureau-
cratic capacity is sufficiently low.11 They find that under these condi-
tions the optimal statute is

p∗ = a− δ

Ω
+

δE

Ω2

Just as the Epstein-O’Halloran model, the Huber-McCarty model pre-
dicts that L will delegate more authority when E is larger. However,
its prediction about preference divergence is the exact opposition. In
the Huber-McCarty model, the statute is more permissive when a and
lm = 0 are further apart. This is a consequence of the fact that low
capacity bureaucrats are more likely to defect to their ideal point in
response to restrictive statutes. This defection is extremely costly to
L when a is far from lm. Thus, L is willing to grant more latitude to
extreme bureaucrats to give them stronger incentives to comply with
the statute. Finally, the Huber-McCarty model makes another predic-
tion at odds with standard models of bureaucratic delegation. Other
models have shown that when ex post sanctions are high, the principal
is willing to delegate more. In the Huber-McCarty model, high δ is
associated with a more restrictive statute. The rationale is straight-
forward. High sanctions can induce even low capacity bureaucrats to
comply. Thus, L no longer needs to grant more discretion solely to
induce compliance.

4.3. Some Generalizations. Most game theoretic treatments of
delegation (included the ones outlined above) maintain a number of
stylized assumptions. First, principals and agents are assumed to
be risk averse. In fact in most applications, they are assumed to
have quadratic preferences. Secondly, the policy space and random
shock are assumed to be single dimensional. Finally, most models as-
sume that policy outcomes are additive functions of policy choices and
shocks. Bendor and Meirowitz (2004) note that while these simplify-
ing assumptions allow us to specify parsimonious models of the issues
at hand, they often come at a price in terms of generalizability. In
particular, the assumptions have limited our ability to determine specif-
ically which features are most important in the decision to delegate,
the selection of and agent, and the choice of monitoring and control
mechanisms. In this section, we sketch the key points of Bendor and
Meirowitz’s argument.

11"Sufficiently low capacity" means Ω > min
n
E, δa ,

√
δ
o
.
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Assume that there is a single principal and n subordinates. All
agents have ideal points in Rd and without loss of generality the prin-
cipals’s ideal point is assumed to be the 0 vector. Preferences over
outcomes are assumed to be represented by a utility function of the
form

ui(x) = h(− kx− yik)
where h(·) is a strictly increasing continuous function, kzk is the Euclid-
ean norm and yi is i’s ideal vector in Rd. Euclidean preference over a
single dimensional policy is clearly a special case of this assumption.
As in Epstein-O’Halloran and Huber-McCarty, Bendor and Meirowitz
assume that the principal is less informed than the subordinates, but
they allow for (1) arbitrary functional forms, and (2) heterogeneity in
the uncertainty associated with different policy selections. Formally
this is captured by assuming that for any policy, outcome x(p) is a ran-
dom variable given by the conditional distribution F (x | p). The prin-
cipal knows only the family of conditional distributions and informed
subordinates know deterministic mappings from p into x. They assume
that “perfect shock absorption” is possible in that an informed agent
can implement any policy outcome x by choosing the appropriate p.
Epstein and O’Halloran’s assumption that x = p + ε is a special case
of this assumption. However, because of the implementation shocks
in McCarty and Huber, the shock absorption assumption holds only in
expectation.
Unlike Huber-McCarty model where bureaucratic capacity refers to

variation in the ability of agents to implement their intended policies,
Bendor and Meirowitz model capacity as variation in the agent’s exper-
tise. They assume that with probability qi agent i learns the random
shock and can select p to attain any x. However, with probability
1−qi subordinate i is uniformed, knowing no more than the principal.
In their basic delegation model, the principal decides whether to

delegate or not. If she does not delegate, she selects policy based
on her priors about the policy shock. If she delegates, she selects an
agent gives that agent complete discretion over the policy choice. The
selected agent chooses policy p, and the game ends. We now highlight
a few of the key findings. For now assume that all agents have high
capacity, qi = 1 for all i ∈ N.

Proposition 11.6. There exists a ball B(ε, 0) centered at 0 with
radius ε containing ideal points of the agents to whom the principal is
willing to delegate. B(ε, 0) is known as the delegation set.

The construction of B(ε, 0) is straightforward. If agent i is given
control of policy, she would like to select a policy to enact the outcome
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x = yi. Accordingly, the principal is willing to delegate to i only if the
outcome yi is preferred to the best lottery that the principal can attain
by selecting policy herself based on her priors. As long as the principal
faces uncertainty, her utility of implementing policy herself, u00, is less
than the utility associated with reaching x = 0 with probability 1, h(0).
This follows from the fact that x = 0 is the principal’s ideal point so
that any lottery on Rd has lower expected utility than getting her ideal
policy x = 0 with certainty. So clearly, the principal will delegate to
an agent with ideal point yi = 0. The set of ideal points that are
sufficiently close to 0 to merit delegation solve the inequality

h(− kyik) ≤ u00

and given that h(·) is strictly increasing and continuous, for any value
of u00 the set {y : h(− kyk) ≤ u00} is a closed ball.
Since so little structure has been placed on h(·), we see that the

informational rationale for delegation in spatial settings hinges only on
the desire to avoid bad outcomes: risk preferences, dimensionality, or
the nature of uncertainty are secondary issues. It is not difficult to see
that relaxing the assumption that all agents are perfectly competent
qi = 1 does not have a qualitative effect. However, as competency
decreases the delegation set shrinks—if you are going to give authority
to someone else that is not likely to know anything more than you,
they had better have preferences very close to yours.
However, if several agents have ideal points in the delegation set, the

choice of who to delegate to can be subtle. The traditional literature
has often stressed the ally principal which says that if the principal
delegates, she will select agent whose preferences most closely match
hers. With homogenous competence, qi the same for all i and the
stylistic assumption that x = p− ε (a multidimensional version of the
assumption in Epstein-O’Halloran) the ally principal holds. The proof
is left as an exercise.
However, with heterogeneity in qi or more general policy outcome

function, the ally principal can fail. As an example of the first problem,
consider the case of x = p−ε and two agents with ky1k < ky2k . Would
the principal ever choose to delegate to agent 2 instead of the more
proximate agent 1? Bendor and Meirowitz show that if q2 > q1 then
possibly yes. We can conclude only that the principal will never select
an agent that is dominated by another agent in the sense that agent i
dominates agent j if kyik ≤ kyjk and qi ≥ qj with one of the inequalities
strict. A more subtle finding is that once we relax that assumption
that x = p − ε even if q1 = q2 agent 2 may still be chosen over agent
1. The key to this possibility is that the uncertainty associated with
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different policies need not be the same. In the general model it is
possible that an uninformed agent 1’s most preferred policy, p1, results
in more uncertainty than an uniformed agent 2’s most preferred policy,
p2. This can be the case if attempting to enact certain types of outcomes
(say ones far from the status quo) is harder and thus subject to larger
possible errors than attempts to enact other types of outcomes (say
ones close to the status quo). As an example suppose the policy and
outcome spaces are R1. As an example of this point, consider two
agents with ideal points y1 = −1 + δ and y2 = 1. Thus, agent 1 is
closer to the principal. Suppose that F (x | p) is as follows. If p > 0
then x = p+ .1 or x = p− .1 with equal probability and if p < 0 then
x = p+.2 or x = p−.2 with equal probability. In this case, either agent
selects p = yi if they do not learn the shock. This means that agent
1’s uniformed policy choice entails more outcome risk. Accordingly if
the principal is risk averse meaning h(·) is strictly concave) and δ is
sufficiently small then the principal would prefer to delegate to agent
2 as opposed to 1 even though her ideal point is closer. An example
of this argument is left as an exercise.
Another potential violation of the ally principal arises from free-

riding among agents when information acquisition is costly. Suppose
now that the shock can be learned at a cost c, by any agent or prin-
cipal. If the cost is incurred, the shock is observed with probability
one. Further suppose that the principal can select an agent giving her
authority and then observe whether she invests the cost c to learn the
shock. If the agent chooses not to learn then the principal can retake
control and decide whether to invest c herself to learn the shock and
select policy. Alternatively the principal can select policy in ignorance.
In this setting it turns out that the delegation set is a multidimen-
sional doughnut. If the principal delegates to an agent with an ideal
point very close to her own, the agent has the choice of paying c to get
the outcome utility h(0) or not investing, with the knowledge that the
principal will then retake control and invest c herself. Thus, learning
implies utility h(0)− c while free-riding yields utility h(− kyik). Thus
for agents with ideal points closer than h−1(h(0)−c), free-riding on the
principal is preferred. Accordingly the principal will not delegate to
agents that are very close. Of course agents that are very distant will
select undesirable outcomes.

Proposition 11.7. If information acquisition has cost c, then the
delegation set consists of agents in the original delegation set with ideal
points farther from 0 than d = h−1(h(0)− c)
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Bendor and Meirowitz also consider the effect of competition by
agents in settings where there are many agents and one principal. Sup-
pose that the agents are perfectly competent and simultaneously an-
nounce outcomes in X. The principal then selects an agent and the
agent selects policy (knowing the shock) to enact the outcome she an-
nounced. If the outcome space is one dimensional and there are agents
on either side of the principal this game looks like Downsian competi-
tion and in every equilibrium at least two agents announce that they
will enact the principal’s ideal outcome. It turns out that this conclu-
sion holds regardless of the dimensionality of the policy space.

Definition 11.6. We say that preferences satisfy diversity if either
(1) there does not exist a vector s ∈ X such that for all i ∈ N xi = λis
for some λi ∈ R1 or (ii) if such a vector does exist then there must be
two agents i and j with λi > 0 and λj < 0.

Diversity requires that either preferences are not colinear or if they
are that there are agents on either side of the principal.

Proposition 11.8. If preferences satisfy diversity then in every
equilibrium at least two agents commit to enacting x = 0 and the prin-
cipal accepts one of these offers.

It is clear that if one agent promises to enact 0 the commitments
of the other agents are payoff irrelevant. So any strategy profile in
which at least 2 agents make this commitment is an equilibrium. Now
suppose that no agents are making this commitment. With at least
two agents at least one of the agents can move the final outcome closer
to her ideal point by committing to an outcome that is closer to the
principals than the closest commitment of the remaining agents. There
cannot be an equilibrium in which the principal does not get her ideal
outcome.

5. Mechanism Design and Signaling Games

So far our presentation of mechanism design proceeded quite inde-
pendently of our analysis of signaling. This isn’t surprising given that
this is the way the literature has generally developed. However, we
think much can be gained by exploring the connections between the
two normally disjoint topics.
We begin with a generic setup for a signaling model. Suppose

that the sender’s (player s) type is θ ∈ Θ = [0, 1] and the message
space is M = [0, 1]. It is common knowledge that θ is drawn from
a distribution F (·) on Θ. Following the s’s message m ∈ M, the
receiver (player r) selects a policy p ∈ X = [0, 1]. Even without
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specifying payoffs, we can use the concept of incentive compatibility to
specify necessary conditions the existence of an equilibrium in which
the senders message is fully-revealing such that m−1(m(θ)) = θ. In
an equilibrium in which m(θ) is one-to-one, consistent beliefs must be
concentrated at the correct θ i.e. beliefs can be represented by the
probability distribution

B(θ | m0) =

½
1 if θ ≥ m−1(m0)
0 otherwise

Given a fully revealing message, sequential rationality by r requires
that p(m) ∈ P (θ) ≡ argmaxur(p, θ). Sequential rationality by s re-
quires that she not have an incentive to mislead r by behaving as if
her type were θ0 when it is θ00. Given the mapping p(m), this incentive
compatibility condition is us(p(θ

00), θ00) ≥ us(p(θ
0), θ00) for all θ0, θ00 ∈

Θ. Alternatively, the receiver’s best response requires ur(p(θ00), θ00) ≥
ur(p(θ

0), θ00) for all θ0, θ00 ∈ Θ. Thus, a requirement of a separating
equilibrium is that p(θ) maximize both us(p, θ) and ur(p, θ).

Proposition 11.9. A separating PBE exists only if the preferences
of the players are similar—specifically for every θ ∈ Θ it must be the case
that {argmaxp∈X ur(p, θ)} ∩ {argmaxp∈X us(p, θ)} is non empty.

Given this result, it is clear that truthful revelation in cheap talk
signaling with one sender requires strong similarity between sender and
receiver payoffs. As an example, recall our version of the open rule
Gilligan-Krehbiel model from chapter 8. There we showed that the
best response by F to informative signals is p(−θ) = θ and p(−θ) = θ
. The proposition specifies that a separating equilibrium exists if and
only if

uF (θ|− θ) ≥ uF (−θ|− θ)

uF (−θ|θ) ≥ uF (θ|θ)
uC(θ|− θ) ≥ uC(−θ|− θ)

uC(−θ|θ) ≥ uC(θ|θ)
We know the first two inequalities holds since p(−θ) = θ and p(−θ) = θ
so the crucial conditions are −c2 ≥ −(2θ + c)2 and −c2 > −(2θ − c)2.
Note that these both hold if c < θ. This is exactly the condition of
preference divergence that we derived before.
Now we extend the general model so that there are two senders 1

and 2 who each observe θ but have possibly different preferences. The
question of whether there is a PBE in which the receiver learns θ can
be viewed as a type of mechanism design problem where the receiver’s
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choice of a mapping p(m1,m2) : M
2 → X is analogous to selecting a

mechanism. In contrast to mechanism design, a PBE of a signaling
game requires that the receivers decision be sequentially rational given
consistent beliefs. Thus, we are not free to choose just any mechanism
that satisfies the sender’s incentive compatibility conditions. However,
Baron and Meirowitz (2004) show that in many cases the constraint
that the receiver’s actions must be sequentially rational is not very
limiting.
Returning for the moment to the mechanism design problem, sup-

pose the receiver wishes induce truthfulness by punishing the senders if
their messages do not coincide. Suppose that there exists a bad policy
pb which both senders like less that the receiver’s best response to any
truthful pair of messages. Formally, pb is defined so that for every θ

u1(argmax
p∈X

ur(p, θ), θ) ≥ u1(p
b, θ)(11.21)

u2(argmax
p∈X

ur(p, θ), θ) ≥ u2(p
b, θ).

Given this definition of the pb, the following mechanism satisfies the
incentive compatibility conditions for both senders to be truthful:

p(m1,m2) =

½
argmaxp∈X ur(p,m) if m1 = m2

pb otherwise.

Given this policy function, condition 11.21 implies that sender 2’s best
response to a truthful announcement by sender 1 is a truthful announce-
ment to avoid the dreaded pb. A similar argument applies for sender
1’s incentive to be truthful. Within the mechanism design framework,
the mere existence of pb is enough to induce truthfulness regardless of
the receiver’s utility from pb. However, in signaling models, we need
to worry about whether choosing pb is sequentially rational for the re-
ceiver. Accordingly it must be the case that pb is an optimal policy
for the receiver given the beliefs she forms at all information sets where
m1 6= m2. This suggests that our mechanism design trick will not be
very compelling to those committed to the signaling tradition. But
recall that weak consistency only constrains beliefs at information sets
that occur with positive probability. In an equilibrium in which the
senders are truthful m1 6= m2 does not occur. Accordingly, satisfying
sequential rationality and credibly committing to enact pb ifm1 6= m2 is
not that challenging. All that is required is that there exists some dis-
tribution bb(·) on Θ such that pb ∈ argmaxp

R
ur(p, θ)d bb(θ). Adding

a state θb in which pb ∈ argmaxp ur(p, θb) would suffice. From this
argument we reach the following conclusion
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Theorem 11.2. (Baron and Meirowitz) With at least two senders
that observe θ as long as there is a policy pb ∈ X satisfying condition
11.21 and a distribution bb(·) on Θ such that pb ∈ argmaxp

R
ur(p, θ)d

bb(θ) a truthful PBE exists.

In response to Gilligan and Krehbiel’s (1989) work on heterogeneous
legislative committees, Krishna and Morgan (2001) demonstrated that
with two senders there are PBE in which the receiver learns the state θ.
Their equilibrium did not hinge on a punishment policy pb but rather
used out-of-equilibrium beliefs to rationalize a policy that punished
any agent that would have an incentive to lie. Krehbiel 2001 criticized
this approach on the grounds off the path responses to some messages
were highly discontinuous and tended to move in the wrong direction.
While in equilibrium, high policies are best reponses to low messages,
the Krishna and Morgan’s PBE call for low policies in response to high
out-of-equilibrium messages.
However, Battaglini (2002) showed that if in fact the policy and

state spaces are multidimensional (X = Θ = [0, 1]2) then truthful
equilibria can be constructed that do not depend on beliefs in such a
peculiar manner. As an example of this model, consider a receiver and
two senders also with Euclidean preferences over two dimensions. The
receiver has an ideal point of (0, 0), sender 1 has ideal point (1, 0) and
sender 2 has ideal point (0, 1). In this model, each sender observes
the shock θ ∈ Θ perfectly, and the outcomes x are a random function
of policy p where x = p + θ. We denote a message by s ∈ {1, 2} by
the vector ms = (m

1
s,m

2
s). Similarly outcomes and policies are vectors

(x = (x1, x2), p = (p1, p2)). A particularly simple direct mechanism
can be constructed once we realize that while neither sender has the
same preferences as the receiver (and thus by Proposition 11.9 there
is not a truthful equilibrium in the 1 sender game), each sender has
the same preferences as the receiver over a particular dimension of the
problem. Sender 1 and the receiver both want the second dimension
of the outcome as close to 0 as possible and sender 2 and the receiver
both want the first coordinate of the outcome as close to 0 as possible.
Suppose that sender 1 with ideal point (1, 0) is given complete control
of the second coordinate, so that p1 = −m1

1 and that sender 2 with
ideal point (0, 1) is given complete control of the first coordinate, so
that p2 = −m2

2. Given this mechanism announcement of ms(θ) = θ is
a best response, and thus the mechanism is incentive compatible. Can
this receiver strategy be supported in a PBE? If so we need to find
weakly consistent beliefs for which this policy function is sequentially
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rational. Since the mapping p(m) described above is a direct mech-
anism at every information set that is reached Bayes’ rule results in
concentrated beliefs θ = m1 = m2. It remains to specify beliefs for
information sets in which m1 6= m2 that make policy function p(m)
sequentially rational for the receiver and make the truthful messages
sequentially rational for the senders. One easy way to do this is to
let the beliefs ignore m1

2 and m2
1. In other words the beliefs are con-

centrated at θ = (m1
1,m

2
2). Battaglini shows that in the Euclidean

preferences setting with at least 2 dimensions and 2 senders separating
PBE exist as long as the ideal points of the 3 players are not on a line.
So we have seen that under particular types of preferences with 2

senders separating PBE exist. With three perfectly informed senders
{1, 2, 3} we do not need to make any assumptions about preferences
as a particularly simple separating PBE can be characterized. Let
p∗(θ) denote a selection from the correspondence argmax ur(p, θ) and
suppose that p+ ∈ p∗(θ) for some θ. Similar to above, suppose the
receiver could commit to the following mechanism that depends on the
messages m1,m2,m3

p(m) =

½
p∗(θ) if θ = mi = mj for some i, j ∈ {1, 2, 3}

p+ otherwise .

Then truthful messages are a best response because if i and j are
truthful then k’s message is outcome inconsequential. Supporting this
policy function as sequentially rational is easy. Any belief mapping
that is concentrated on θ if m1 = m2 = m3 = θ is weakly consistent,
and any beliefs that are concentrated at θ if θ = mi = mj for some
i, j ∈ {1, 2, 3}make the policy mapping a best response for the receiver.
The conclusion of Baron and Meirowitz is that any direct mecha-

nism that (1) selects an optimal policy for the receiver following truth-
ful messages and (2) following non-truthful messages selects a policy
which is optimal given some belief on Θ can be supported in a PBE to
the signaling game.

6. Exercises

Exercise 11.1. Suppose that instead wishing to maximize the wel-
fare of her department, the department chair wanted to maximize her
surplus (contributions minus expenditures on the espresso maker). Would
she still want to implement the Groves-Clarke mechanism?

Exercise 11.2. Suppose that a polling mechanism were used such
that x(m) = 1

n

P
mi so that average ideal point is the implemented

policy. Show that this mechanism is not strategy-proof.
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Exercise 11.3. Prove Moulin’s result (Proposition 11.2).

Exercise 11.4. Prove that the strategies described by equation 11.1
form an equilibrium to the first price auction.

Exercise 11.5. Demonstrate that use of the strategy, "Hold up
placard until the price exceeds b(θ)" constitutes an equilibrium in the
descending price auction.

Exercise 11.6. Find the expected revenue of a standard auction if
F (·) is the uniform distribution on [0, 1].

Exercise 11.7. Consider Ferejohn’s model with moral hazard. As-
sume that equation 11.20 does not hold. Construct a mixed strategy
equilibrium where the government sometimes chooses a = low and the
voter always removes the government when x = low and occasionally
removes it when x = high.

Exercise 11.8. Prove that in the Epstein-O’Halloran model P ∗ will
always be a closed interval

£
p, p
¤
⊂ X .

Exercise 11.9. In the Epstein-O’Halloran model, show that the
majority rule outcome for P ∗ is that preferred by the legislator with
ideal point lm.

Exercise 11.10. In the Epstein-O’Halloran model, assume that ε
is distributed N(0, σ2). Compute the optimal statute P . How does P

depend on lm, a, and σ2 Hint: E(ε|ε < m) = −σ φ(mσ )
Φ(mσ )

.

Exercise 11.11. Augment the Esptein-O’Halloran model by assum-
ing that governor G with ideal point g > lm appoints A (i.e. selects a)
prior to L choosing P. Assume that A learns ε but that G and L believe
that ε is distributed uniformly on [−E,E]. Show that the governor’s
optimal appointment is a∗ ∈ (lm, g). How does a∗ depend on lm and
E?. What if the governor appoints A after P is selected?

Exercise 11.12. In the context of the Bendor-Meirowitz model,
prove that {y : h(kyk) ≤ u00} is a closed ball.

Exercise 11.13. In the Bendor-Meirowitz model, show that if qi is
the same for all i and x = p − ε (with ε having distribution F (·) on
Rd), the ally principal holds.

Exercise 11.14. In the Bendor-Meirowitz model, suppose that q1 =
q2 =

3
4
, and that u(x) = −x2. Find the minimum value of δ such that

the principal prefers delegation to agent 2.
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Exercise 11.15. Construct a fully separating PBE in a version of
the Battaglini model in which sender 1 has ideal point (1, 1) and sender
2 has ideal point (0, 1).





CHAPTER 12

Mathematical Appendix

Mathematics can be thought of as a language constructed to facil-
itate the derivation of logical propositions from basic axioms. Math-
ematical propositions are “true” if and only if the underlying axioms
and assumptions are “true”. Euclidean geometry is the set of all state-
ments that are true if parallel lines never intersect. Other geometries
are based on different axioms and generate other theorems.
Mathematical arguments have two main advantages over forms of

non-formal argumentation:
• The basic assumptions of the proponent are more clearly laid
out. This makes it clear which of the propositions are logically
derived and which are assumed to be true.

In many non-formal theories of politics, it is not clear what types
of assumptions about individual and institutional behavior are being
made to produce the empirical predictions. The result is often pre-
dictions incompatible with any coherent theory of behavior. In math-
ematical models, the “micro- foundations” are well specified. The
foundations are no more or less appropriate when they are formalized.
However, understanding of the relationships between foundations and
findings is made easier by the use of this type of reasoning.

• It is often easier to derive logical propositions within the frame-
work of mathematics than outside it.

While mathematics was designed and has evolved to economize on
the production of logical arguments, English and other spoken lan-
guages serve so many other purposes that their ability to produce log-
ical argument is compromised.

0.1. Mathematical Statements and Proofs. Just as any other
language, the fundamental unit of mathematics is the statement, which
for now we denote P . Here we review the types of mathematical
statements that readers are likely to encounter.

: Universal Statement: P is always true within a given mathe-
matical system.

Consider the following example of a universal statement.

299
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: Let x be a real number. ∀x, x ≤ |x| where the symbol ∀
means “for all” or “for every”.

To prove such a statement, we require it to be proven for a generic
x where we can only use the properties common to every value of x.

: Existential Statement: There are conditions under which P is
true.

The following is such an example

: ∃x such that x = |x| where ∃ means “there exist(s).”
To prove an existential statement, we must only find a value of x

in the given system for which P is true. Of course in this example,
x ≥ 0 is the needed condition.
Mathematics also has very well defined procedures for verifying that

a given statement is true. Now we consider the types of proofs that
will be encountered in the text.
Deduction. Proofs by deduction are those in which a statement is true
because it is logically connected to a statement known or presupposed
to be true. Suppose we know P to be true, then we can establish that
Q is true is we can prove “if P , then Q” or P ⇒ Q. Obviously, this
can take place via a number of steps like:

P ⇒ R
R⇒ S
S ⇒ Q

Sometimes when we work it out in our mind, showing S ⇒ Q may
be the first step. However, when communicating the logic of the proof,
it should be written according in the order given above. Deduction
can be used to prove both existential and universal statements.
The Contrapositive. Sometimes it is easier to establish, P ⇒ Q by
formulating it in terms of the negative statements ˜Q and ˜P where ˜
means “not”. It is logically true that (˜Q⇒ ˜P )⇒ (P ⇒ Q).

Example 12.1. If 7m is an odd number, then m is an odd number.

Thus, P = {7m is odd}, Q = {m is odd} , ˜P = {7m is even}, and
˜Q = {m is even}. We wish to show P ⇒ Q by showing ˜Q⇒ ˜P .
˜Q⇒ m = 2k for some integer k
⇒ 7m = 7(2k)
⇒ 7m = 2(7k)
⇒ 7m = 2n for some integer n
⇒ ˜P

Contradiction. One way is to prove that the statement P is true is to
demonstrate that ˜P is false. Proving a statement is false is quite easy
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we only need to provided a counterexample. One counterexample will
show ˜P to be false and that P is true. Note that this procedure works
best when we are arguing against a universal statement or in favor of
an existential statement.

Example 12.2. Let n be any integer and let P = {there exists n
> 0 such n2 + n + 17 is not a prime number} or P = {∃n > 0 3
n2+n+17 is not a prime number} where ∃ means “there exists” and
3 means “such that.”

We can now construct ˜P ={∀ n > 0, n2+n+17 is a prime number}.
But ˜P is false since n = 17 implies that n2 + n+ 17 = 19 · 17 and is
thus not prime. Thus, P is true.
We may also establish ~P is false by deriving a series of implications

from ˜P that lead to a false statement.
˜P ⇒ n+ 1 + 17/n is not an integer for all n
⇒ 17/n is not an integer for all n
⇒ 1 is not an integer

The final statement is obviously false.

1. Sets and Functions

1.1. Sets. A set is a collection of distinct objects be they numeric
values or anything else. The objects of sets are called elements. We
may denote sets both by enumerating them or by describing them.
Suppose S is the set of all positive integers less than 10. We may
write S as S = {1, 2, 3, 4, 5, 6, 7, 8, 9} or S = {n|n is an integer and
0 < n < 10}. The second statement is read as “S is the set of all
numbers that are integers and are greater than 0 and less than 10.”
Sets can either have a finite number of elements as above or an infinite
such as I = {n |n is integer greater than 7} or J = {x | 0 < x < 1}.
Infinite sets are either countable or uncountable. I is countable since
a integer can be associated with each element. J on the other hand
is uncountable since it is impossible to associate an integer with each
element. We can prove that J is uncountable as follows. Associate
elements in J with integers such that x1 is the first element, x2 is the
second element and so forth. As long as x1 < x2 there exists an x that
is an element of J such that x1 < x < x2 which is not associated with
an integer. This is a contradiction.

Example 12.3. A rational number is one that can be written as a
fraction p/q where p and q are integers. Prove that Q = {x | x is
rational} is infinite but countable.
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We may denote that some element belongs to a particular set with
the symbol “∈”. Therefore, the following are truthful statements: 3 ∈
S, 9 ∈ I, .345678 ∈ J ,and .8 ∈ Q. We can also designate which
elements are not in a particular set with “/∈” so that 10 /∈ S, 7 /∈ I,
0 /∈ J, and π /∈ Q.

1.2. Set Relations and Operations. The following are some
useful relationships between different sets.
Equality: S1 = S2 implies that x ∈ S1 if and only if x ∈ S2. In other
words, if S1 = S2 , S1 and S2 contain exactly the same elements.
Subset: S1 is said to be a subset of S2 or S1 ⊆ S2 if for all x ∈ S1
, x ∈ S2. Thus, S1 is a subset of S2 if all of the elements of S1 are
also in S2. Note that if S1 = S2, then S1 ⊆ S2 and S2 ⊆ S1. We can
also define a “proper” subset which rules out the possibility of equality.
S1 ⊂ S2 implies that for all x ∈ S1 , x ∈ S2 and there exist y ∈ S2 such
that y /∈ S1. In other words, all elements of S1 are in S2 but S2 has
additional elements not found in S1. We may use the symbols ⊃ and
⊇ to write such statements in the opposite order. Finally, the symbol
6⊆ means “not a subset of.”
Disjoint: Two sets are said to be disjoint is they have no elements in
common. Formally, S1 and S2 are disjoint if x ∈ S1 implies that
x 6∈ S2.
There is a special set ∅ known as the “null set” defined by the

following properties: ∅ contains no elements and for all S, ∅ ∈ S.
Clearly, ∅ is the smallest possible set. There is also a largest set U
such that for all S, S ⊆ U . We will call this set the universal set.
A number of mathematical operations on sets will be useful.

Unions: The union of two or more sets is the total set of elements
contained by all of the sets. Formally, we write the union of S1 and
S2 as S1 ∪ S2 = {x |x ∈ S1or x ∈ S2}. We can write the union of a
large number of sets indexed by i as

nS
i=1

Si = S1 ∪ S2 ∪ ... ∪ Sn.
Intersections: The intersection of two or more sets is the set of elements
common to all of the sets. Formally, we write the intersection of S1 and
S2 as S1 ∩ S2 = {x |x ∈ S1and x ∈ S2}. We can write the intersections
of a large number of sets indexed by i as

nT
i=1

Si = S1 ∩ S2 ∩ ... ∩ Sn. If
S1 and S2 are disjoint, S1 ∩ S2 = ∅. Since they have no elements in
common, the only subset in the intersection must be the null set.
Complements: If we have a universal set U and a subset S we can define
the complement of S as Sc = U/S = {x |x ∈ U and x 6∈ S}.
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Let A, B, C, and D be sets. Then the operations on these sets
must satisfy the following properties..

: Communitive: A ∪B = B ∪A and A ∩B = B ∩A
: Associative: (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C =
A ∩ (B ∩ C)

: Distributive: A∪(B∩C) = (A∪B)∩(A∪C) and A∩(B∪C) =
(A ∩B) ∪ (A ∩ C)

1.3. Correspondences and Functions. Another way to relate
two sets to one another is to specify which elements of each set “cor-
respond” or “go with each other”. In general a correspondence is a
rule, f , that links the elements of S1 to S2. Formally, we may write
f : S1 →→ S2 where the set S1 is called the domain (or pre-image) set
and S2 is the range (or image) set. As an example, consider Figure
12.1 where the correspondence f relates x ∈ S1 to elements y, z ∈ S2.

Insert Figure 12.1 Here

A function is a special type of correspondence which relates each
element of the domain to a unique point of the range. So if the
correspondence f : S1 →→ S2 is actually a function, for every x ∈ S1
it is the case that f(x) is a single element of S2. For functions we
drop one of the arrows and write f : S1 → S2. With a function,
multiple points from the domain may map into the same point in the
range. In Figure 12.2, the function relates x,w, v ∈ S1 to elements
y, z ∈ S2..Since each element of the domain maps into a single element
in range, we may without ambiguity write a function as y = f(x) for
x ∈ S1 and y ∈ S2. We may also represent the function by a set of
ordered pair such as {(y, x) | y = f(x) for all x ∈ S1 and y ∈ S2}.

Insert Figure 12.2 Here

Consider a function f : A→ B. Two important properties are:

: Injectivity: For all a1 and a2 ∈ A, f(a1) = f(a2) if and only
if a1 = a2.. Each point in the range is associated with a single
point in the domain. This property is also known as“one-to-
one”

: Surjectivity: ∀b ∈ B there exist a ∈ A such that f(a) = b This
property is also known as“on to”

If a function has these two properties it is known as bijection and
there exists and inverse function mapping points in B to points in A.
We can write this inverse function as f−1:B → A or f−1(b) = a for b ∈
B and a ∈ A .
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Example 12.4. y = 2x is a bijection. Since every y maps to a
single x, we can write the inverse function f−1(x) = y/2.

Example 12.5. y = x2 is not injective since x and −x produce the
same y. However, if we restrict the domain to positive numbers, we
can write f−1(x) =

√
y

2. The Real Number System

The real number system R consists of all the integers as well as
the rational numbers (ratios of integers) and the irrational numbers
(numbers that are not the ratio of integers). The real number system
is actually a set of numbers and some additional structure. The system
includes two operators, + and × which map from R × R into R and
a weak ordering ≥ which is a subset of R × R. These are the
familiar operators of addition and multiplication and the ordering is
our old fried “greater than or equal to.” Axiomatically, the system
is characterized by 14 axioms. For our purposes it is sufficient to
highlight only a subset of these conditions. The Real number system
is a field, which means that the operations + and × behave the way
we expect them to: the order of addition (or multiplication) does
not matter, multiplication is distributive (meaning that ∀x, y, z ∈ R
x(y + z) = xy + xz), multiplication and addition by 0 and 1 have the
expected consequences and every number has a multiplicative inverse
(so that x× 1

x
= 1). In addition the real number system satisfies order

axioms which insure that ≥ behaves the way we expect it to. What is
probably unfamiliar territory is one particular axiom of the real number
system which we must emphasize.

Definition 12.1. Completeness axiom:For every non-empty sub-
set S ⊂ R if there exists an upper bound b of S (meaning x ∈ s =⇒
X ≤ b) then there exists a least upper bound c (meaning c is an upper
bound of S and if z is an upper bound of S then c ≤ z). In other
words every set with an upper bound has a least upper bound.

An example of a space that is not complete is R\Z where Z is
the set of integers. In this space the set (0, 1) has an upper bound
(example 3

2
) but it does not have a least upper bound.

2.1. Limits of Real numbers. A sequence of real numbers {xn}∞n=1
sometimes just denoted {xn} we mean an infinite list of real numbers.
More precisely a sequence is a function which maps the counting num-
bers (1, 2, 3, ...) into the real numbers. In this sense xn is the value of
this function evaluated at integer n.
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Definition 12.2. The number l ∈ R is a limit of the sequence
{xn} if for every ε > 0 there is an N such that for all n > N we have
|xn − l| < ε. If l is a limit of the sequence {xn} we write l = limxn.

Proposition 12.1. A sequence has at most one limit.

Proof: Suppose otherwise, then a = limxn = b and a 6= b. Since
a 6= b there exists some ε > 0 such that (1) |a− b| > 2ε. Since
a = limxn = b it must be the case that for some N if n > N (2)
|xn − a| < ε and (3) |xn − b| < ε. Without loss of generality assume
that a < b if xn < a < b then we have contradicted 1 or 3, if a < b < xn
then we have contradicted 1 and 2, if a < xn < b then 1 implies that
either 2 or 3 are violated. One of these three cases must be true.¥
Definition 12.3. A sequence {xn} is a Cauchy sequence if for

every ε > 0 there is anN such that for all n,m > N we have |xn − xm| <
ε.

Proposition 12.2. A sequence has a limit if an only if it is a
Cauchy sequence.

Definition 12.4. We say a sequence {xn} converges to infinity ∞
(−∞) if for any b ∈ R there is some N such that for all n > N we
have xn > (<)b.

Definition 12.5. The number l ∈ R is a cluster point of the se-
quence {xn} if for every ε > 0 and every N there exists some n > N
such that. |xn − l| < ε.

The sequence xn = −1n has two cluster points 1 and −1 but no
limit.

Proposition 12.3. l is a cluster point of {xn} if and only if it is
the limit of a subsequence {xn0}.

Definition 12.6. The number l ∈ R is the limit superior (limsup)
of the sequence {xn} if (1) for any ε > 0 there is an N such that. for
all n > N we have xn < l + ε, and (2) for any ε > 0 and any N there
exists some n > N we have xn > l − ε. We write l = lim supxn

Definition 12.7. l is the limit inferior (liminf) of the sequence
{xn} if l = − lim sup(−xn).

An alternative definition which may be more intuitive is,

Definition 12.8. The limsup is the greatest cluster point and the
liminf is the least cluster point.
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Proposition 12.4. For any sequence {xn} lim supxn ≥ lim inf xn
and if equality holds then limxn exists and limxn = lim supxn =
lim inf xn.

3. Points and sets

We now move beyond the real numbers and consider arbitrary
spaces that are endowed with particular structures. These spaces are
called metric spaces. Typically, we think about a notion of distance in
R and specify that the distance between two points x and y is |x− y| .
More generally, we can think about arbitrary spaces sets endowed with
a distance function.

Definition 12.9. A metric space (X, d) is a set of points X and a
distance function d(x, y) : X ×X → R, satisfying the conditions:
1. d(x, y) ≥ 0
2. d(x, y) = 0 if and only if x = y
3. d(x, y) = d(y, x) for any x, y ∈ X
3. d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

In addition it is convenient to think about balls around points. So
for a scaler ε > 0 and a point x ∈ X we say the ε-ball around x is
B(x, ε) = {y ∈ X : d(x, y) < ε}.There are two properties of sets that
we are concerned with.

Definition 12.10. A set A ⊂ X is open if for every x ∈ A there
is some ε > 0 such that. B(x, ε) ⊂ A. A set A ⊂ X is closed if its
complement X\A is open.

Out of convention, we think of X and ∅ as both open and closed.
Several results about open and closed sets can be established.

Proposition 12.5. 1. If O1 and O2 are open then O1∩O2 is open.
Theorem 12.1. 2. Given a collection of open sets O1, O2, .... the

set ∪iOi is open.
3. If C1 and C2 are closed then C1 ∩ C2 is closed.
4. Given a collection of closed sets C1, C2, .... the set ∩iCi is closed.

Proof. 1. Assume that O1 and O2 are open and pick an arbitrary
point x ∈ O1 ∩O2. Since O1 and O2 are open there is some ε1, ε2 > 0
such that. B(x, ε1) ⊂ O1 and B(x, ε2) ⊂ O1 . Letting ε = min{ε1, ε2}
we haveB(x, ε) ⊂ O1 andB(x, ε) ⊂ O2 implying thatB(x, ε) ⊂ O1∩O2
2.Assume that O1, O2, .... are open and pick an arbitrary point x ∈

∪iOi. Since x ∈ Oi for some i there is some ε > 0 such that. B(x, ε) ⊂
Oi. But this means that B(x, ε) ⊂ ∪iOi.
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3. and 4 follow from De Morgan’s laws X\{A ∪ B} = {X\A} ∩
{X\B} and X\{A ∩B} = {X\A} ∪ {X\B}.¥ ¤

It is not the case that the infinite intersections of open sets is open.
An example is the collection of open sets (− 1

n
, 1
n
). Each such set is

open but the intersection is just the set {0} which is not open.
Another property of sets that surfaces is

Definition 12.11. A set A ⊂ X is bounded if there exists some
finite scaler k such that for every x, y ∈ A we have d(x, y) < k.

IfX is a subset of finite dimensional Euclidean spaceRn = {(x1, x2, ..., xn) :
xi ∈ R} the we have the following definition.

Definition 12.12. A set A ⊂ Rn is compact if A is closed and
bounded.

In arbitrary metric spaces a more general definition of compactness
is needed. The more general (or Topological) definition of compactness
deals with open covers.

Definition 12.13. Given a set A an open covering of A is a collec-
tion of sets {Oθ}θ∈Θ where Θ is an arbitrary index set and Oθ is open
for every θ ∈ Θ such that. A ⊂ {∪θ∈ΘOθ} (in other words if x ∈ A
then there is some θ ∈ Θ such that. x ∈ Oθ).

A set is compact if every open covering has a finite sub covering.

Definition 12.14. A set A is compact if {Oθ}θ∈Θ an open covering
of A implies that for some finite set B ⊂ Θ, {Oθ}θ∈B is a covering of
A.

Given our metric space is also a field (so that + is defined) which
is the case of Rn we have the additional useful definition:

Definition 12.15. A set A is convex if for every x, y ∈ A and
every scaler λ ∈ [0, 1] the point λx+ (1− λ)y is also in A.

Proposition 12.6. If A1, A2, .... is a collection of convex sets then
∩iAi is a convex set.

Proof. Since Ai is convex for any x, y ∈ Ai and any weight we
have λx + (1 − λ)y ∈ Ai. Since any x, y ∈ ∩iAi must be in every Ai

we know that if x, y ∈ ∩iAi then λx + (1 − λ)y ∈ Ai for every i and
thus λx+ (1− λ)y ∈ ∩iAi.¥ ¤
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4. Continuity of Functions

We now consider two sets X and Y that are each subsets of metric
spaces (not necessarily the same spaces). We refer to the metrics for
these spaces as dX and dY . The motivating example is X = Y = R,
but the following applies to any functions that map one metric space
into another. Of central importance in analysis is continuity.

Definition 12.16. A function f : X → Y is continuous at x ∈ X
if for any ε > 0 there is some δ > 0 such that. for all y ∈ X with
dX(x, y) < δ it is the case that dY (f(x), f(y)) < ε. A function is
continuous if it is continuous at every point in its domain.

Another way to say the same thing is offered by the following defi-
nition.

Definition 12.17. A function f : X → Y is continuous if for every
open set B ⊂ Y the inverse image f−1(B) := {x ∈ X : f(x) ∈ B)} is
open

To clarify in this definition whether or not a set B ⊂ Y is open
depends on the metric dY and whether or not an inverse image set
f−1(B) is open depends on dX . Of particular interest are functions for
which the range is a subset of the real line. These functions are called
real-valued functions. For real valued functions another definition of
continuity is often convenient.

Definition 12.18. Given a function f : X → R, the upper contour
sets is a collection of sets of the form Uα = {x ∈ X : f(x) ≥ α} for
every α ∈ R. The lower contour sets are the sets Lα = {x ∈ X :
f(x) ≤ α}.
Continuity can be restated in terms of the contour sets.

Proposition 12.7. The function f : X → R is continuous if and
only if all of the upper and lower contour sets are closed

4.1. Extrema, Solutions and Fixed Points*. The following is
a crucial result indicating sufficient conditions for optimization prob-
lems to have solutions.

Theorem 12.2. If f : X → Y is continuous and X is compact and
non-empty then there exists a point x∗ = argmaxx∈X{f(x)}.
Another crucial result follows.

Theorem 12.3. (Bolzano Intermediate Value theorem) If F :
[a, b] → R is continuous with f(a) < y < f(b) [or f(b) < y < f(z)]
then there is a c ∈ (a, b) with f(c) = y.‘
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Proof. Consider the lower contour set of y, Ly = {x ∈ [a, b] :
f(x) ≤ y}. Now Ly is non-empty as a ∈ Ly. This set is also bounded
so by completeness it has a least upper bound. Call this point c.
Either c ∈ Ly (that is f(c) ≤ y) or c is a cluster point. If c is a
cluster point then there is some sequence {xn} of numbers in Ly with
limxn = c. Since f is continuous this implies that {f(xn)} converges
to f(c). Since f(xn) < y for every n it is the case that f(c) ≤ y.
Thus we know that c ∈ Ly. Now consider the upper contour set of y
Uy. Now Uy is non-empty as b ∈ Uy. This set is also bounded so by
completeness it has a greatest lower bound. Call this point c. Either
c ∈ Uy (that is f(c) ≥ y) or c is a cluster point. If c is a cluster point
then there is some sequence {xn} of numbers in Uy with limxn = c.
Since f is continuous this implies that {f(xn)} converges to f(c). Since
f(xn) > y for every n it is the case that f(c) ≥ y. Thus we know that
c ∈ Uy. Thus c ∈ Uy ∩ Ly implying that f(c) = y.¥ ¤
Of central importance to the analysis of games are fixed points.

Definition 12.19. Given a function f : X → X a fixed point is a
point x ∈ X such that. f(x) = x.

A key result is Brouwer’s fixed point theorem.

Theorem 12.4. (Brouwer 1910) If X ⊂ Rn is compact, convex and
non-empty and f : X → X is continuous then it has a fixed point.

While the proof for n > 1 is beyond the scope of this review, one can
prove the one-dimensional version with the intermediate value theorem.

Proposition 12.8. If f : [a, b]→ [a, b] is continuous then it has a
fixed point.

Proof. Define the function g(x) = f(x)− x. This is a continuous
function from [a, b] into [a, b]. If for some a0, b0 ∈ [a, b] we have g(a) > 0
and g(b) < 0 or g(a) < 0 and g(b) > 0 then the intermediate value
theorem implies that for some c ∈ [a0, b0] ⊂ [a.b] we have g(c) = 0 so
that f(c) = c and c is a fixed point. The remaining cases are g(x) > 0
for all x ∈ [a, b] or g(x) < 0 for all x ∈ [a, b]. These cases involve
f(x) > x for all x or g(x) < x for all x. But since b = sup{x ∈ [a, b]}
= sup{f(x) : x ∈ [a, b] and a = inf{x ∈ [a, b]} = inf{f(x) : x ∈ [a, b]}
this is not possible.¥ ¤
When X is a field the following condition is of relevant.

Definition 12.20. A function f : X → R with X a convex set is
quasi-concave if the upper contour sets are convex. That is for every
t ∈ R and x, x0 ∈ X and every λ ∈ (0, 1) it is the case that f(x) ≥ t
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and f(x0) ≥ t implies f(λx + (1 − λ)x0) ≥ t. If the last inequality is
always strict the function is strictly quasi concave.

A useful property of quasi-concave objective functions is easily ob-
tained.

Theorem 12.5. If X is convex and f : X → R is strictly quasi
concave then argmaxx∈X{f(x)} contains at most one point.

Proof. By way of a contradiction assume otherwise, so that there
are two distinct points x, y ∈ argmaxx∈X{f(x)} and f(·) is strictly-
quasi concave. This means that for λ ∈ (0, 1) it is the case that
f(λx + (1 − λ)y) > f(x) = f(y) contradicting the fact that x, y ∈
argmaxx∈X{f(x)}.¥ ¤

5. Correspondences*

Some important concepts about correspondences should also be
considered.

Definition 12.21. A correspondence f : X →→ Y is convex-
valued if for each x ∈ X the set f(x) is convex.

Notions of continuity may also be extended to correspondences.
First we define the upper and lower images.

Definition 12.22. The upper image of E ⊂ Y under f (denoted
f+(E), is defined by f+(E) = {x ∈ X : f(x) ⊂ E}.

The upper image of a set E is the set of points in X that map into
subsets of E.

Definition 12.23. The lower image of E ⊂ Y under f (denoted
f−(E), is defined by f−(E) = {x ∈ X : f(x) ∩E 6= ∅}.

The lower image of a set E is the set of points in X that map
into sets that intersect E. Just as continuity of functions pertains
to properties of contour sets continuity of correspondences relates to
properties of these image sets.

Definition 12.24. A correspondence f : X →→ Y is upper hemi-
continuous if for each x ∈ X, whenever x ∈ f+(E) for E an open set
in Y there exists an open ball B(x, ε) with B(x, ε) ⊂ f+(E).

Definition 12.25. A correspondence f : X →→ Y is lower hemi-
continuous if for each x ∈ X, whenever x ∈ f−(E) for E an open set
in Y there exists an open ball B(x, ε) with B(x, ε) ⊂ f+(E).
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Definition 12.26. A correspondence f : X →→ Y is-continuous
if it is both upper and lower hemi-continuous.

For most problems we care about we can settle with an alternative
condition which is more intuitive then upper-hemi continuity.

Definition 12.27. A correspondence f : X →→ Y is closed at
x ∈ X if xn → x, yn ∈ f(xn) and yn → y imply y ∈ f(x). If a
correspondence is closed at each point in its domain it is closed.

Proposition 12.9. If Y is compact then f : X →→ Y is upper
hem-continuous if and only if it is closed.

The following result is an early version of what is called the Theo-
rem of the maximum. Alternative versions exist, but the basic point
for formal theory is clear, the solutions of well-behaved optimization
problems respond smoothly to changes in parameters.

Theorem 12.6. (Berge 1997) If u : X → R is a continuous func-
tion and Γ : Y →→ X such that for each y ∈ Y, Γ(y) 6= ∅ then
(1) the function v : Y → R defined by v(y) = max{u(x) such that

x ∈ Γ(y)} is continuous and
(2) the correspondence a : Y →→ X defined by a(y) = argmaxx∈Γ(y){u(x)}

is upper hemi-continuous.

Our final result is a generalization of Brouwer’s fixed point theorem

Theorem 12.7. (Kakutani 1941) Let A ⊂ Rn be compact and con-
vex and let f : A →→ A be closed (or upper-hemi continuous) with
non-empty and convex values then f has a fixed point.

6. Calculus

The above analysis results represent insights about problems that
can be gained based only on knowledge of topological features (com-
pactness, continuity) and convexity features. With more structure and
the use of calculus finer conclusions can be reached through analysis.
In this section we provide a quick review of basis concepts of calculus
which will prove useful throughout the book. Readers are also referred
to Gill (2004), Chiang (2004), and Simon and Blume (1994).

6.1. Calculus in R1. Many of the questions we ask in empirical
political science involve what happens to variable y when we change
variable x. If the variables are related by a function so that y =
f(x), the derivative allows us to describe and quantify the effects the
variables have on one another. Suppose that y = f(x). What happens
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if we increase x to x+h? The change in y per unit change in x is then
given by

∆y

∆x
=

f (x+ h)− f (x)

h
which is just the slope of the line drawn from f(x + h) to f(x). The
difficulty of this measure is that it depends on h as as illustrated by
the two heavy dotted lines corresponding to h1 and h2 in Figure 12.3.
We would prefer a measure that does not depend on h and describes
the behavior of the function as close to x as possible. Such a measure
is

dy

dx
= lim

h−→0

f (x+ h)− f (x)

h
which is known as the derivative of f with respect to x. This is
the solid heavy line in Figure 12.3. We also may use the notation
f 0(x). Note that while the numerator of this limit goes to zero, the
denominator goes to infinity so it can converge to any value. There
is no guarantee that such a limit exists. If it does exists, we say the
function is differentiable. The limit cannot exist if f is not continuous
at x, however if may be continuous and still not be differentiable. For
example consider the function : f(x) = |x| which is continuous but not
differentiable at x = 0. To see this, note that

lim
h−→0

f (x+ h)− f (x)

h
= lim

h−→0

|h|
h

Such a limit does not exist because a sequence of h < 0 converges to
−1 while sequences with h > 0 converge to 1.

Insert Figure 12.3 Here
Since derivative is a measure of the rate of change in y given a

change in x, we can use it to determine whether or not a function is
increasing or decreasing. If f 0(x) > 0, the function is increasing while
if f 0(x) < 0 the function is decreasing.
6.1.1. Some Special Derivatives. Many ordinary functions have deriv-

atives with well known forms. We now list those for reference.
(1) Constant: If f(x) = c then f 0(x) = 0.
(2) Linear: If f(x) = a0 + a1x then f 0(x) = a1.
(3) Polynomial: If f(x) = axn then ; f 0(x) = naxn−1

(4) Exponential: If f(x) = eax then f 0(x) = aeax

(5) Natural logarithm: If f(x) = a ln(bx); f 0(x) = a/x

6.1.2. Derivatives of Composite Functions. We can take derivatives
of more complicated functions especially if we can break them down
into composite functions say f(x) and g(x). The following rules help
to compute such derivatives.



6. CALCULUS 313

(1) The Addition and Subtraction Rule: d(f+g)
dx

= f 0 + g0 and
d(f−g)
dx

= f 0 − g0

(2) The Product Rule: d(f ·g)
dx

= f 0 · g + f · g0

(3) The Quotient Rule:
d( fg )
dx

= f 0·g−fg0
g2

(4) The Chain Rule: Let z = g(y) and y = f(x) that z =
g (f (x)), then dz

dx
= dz

dy
dy
dx
= f 0 (x) g0 (y)

6.1.3. Higher Derivatives. Since derivatives of f(x) (when they ex-
ists) are themselves functions of x, we can take derivatives of derivatives
to learn more about the properties of the function. We represent the
derivative of f 0(x), or the second derivative of f(x) as d2f

dx2
= f” (x) .

As before, if f” > 0, f 0 is increasing and if f” < 0, f 0 is decreasing.
The second derivative can also tell us about the behavior of the original
function. If

• f 0 > 0, f” > 0, then f(x) is increasing at an increasing rate
• f 0 > 0, f” < 0, then f(x) is increasing at a decreasing rate
• f 0 < 0, f” > 0, then f(x) is decreasing at a decreasing rate
• f 0 < 0, f” < 0, then f(x) is decreasing at an increasing rate

Figure 12.4 plots a function that exhibits each of these properties
at different ranges of x.
In principal, we can take nth order derivatives, provided that they

exist. We denote these as dnf
dxn

= f (n) (x) .

Insert Figure 12.4 Here

6.1.4. Maxima and Minima of Functions. Much of the mathemati-
cal analysis in political game theory involves maximizing or minimizing
functions. Voters maximize utility functions and politicians maximize
votes. States minimize the number of deaths in combats. The deriva-
tive is very handy in locating the local (as opposed to global) extrema
of functions.
Intuitively, the local maximum (minimum) is the point where the

function ceases to increase (decrease) and begins to decrease (increase).
Therefore, the derivative must equal zero unless the local extremum is
global and located on the boundary of range. Figure 12.5 illustrates
the distinctions between global and local maxima and minima and the
intuition as to why derivatives must be zero at local extrema. How-
ever, the derivative may be zero at a point that is not a maximum
or a minimum as demonstrated by the function in Figure 12.6 which
contains a “saddle point.” Thus, a second order condition must be
satisfied to guarantee that a point satisfying the first order condition is
indeed an extremum. Approaching a local maximum, the derivative is
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positive and becomes negative after reaching it. So the derivative must
be decreasing which means second derivative cannot be positive. Con-
versely, at a local minimum the second derivative cannot be negative.
At a saddle point, the second derivative is zero.

Insert Figure 12.5 and 12.6 Here
Some Formal Definitions. The following definitions will be useful.

Let f : D→ R then
• f(x∗) is a global maximum if f(x∗) ≥ f(x) for all x ∈ D
• f(x∗) is a global minimum if f(x∗) ≤ f(x) for all x ∈ D
• f(x∗) is a local maximum for all � > 0, f(x∗) ≥ f(x) if |x∗ −
x| < �

• f(x∗) is a local minimum for all � > 0, f(x∗)≤ f(x) if |x∗−x| <
�

• If f(x∗) is a maximum, then x∗is known as argmax
D

f(x)

• If f(x∗) is a minimum, then x∗ is known as a argmin
D

f(x)

• If f 0(x∗) = 0, then x∗ is a critical point of f .
6.1.5. Application: Bureaucratic Resource Allocations. A bureau-

crat has a budget B to spend on two activities that contribute to
the output of the agency. The output of the agency is given by
O =

√
x1x2 where x1 and x2 are the expenditures on activities 1 and 2

respectively. Since B = x1+x2, we can replace x2 with B−x1 so that
O =

p
x1 (B − x1). Now we wish to find the expenditure x1 that max-

imizes the agencies output. First, we will compute the critical values
x∗1 to look for local maxima. The derivative of the output function is

O0 =

¡
1
2
B − x∗1

¢p
x∗1 (B − x∗1)

Setting O0 to 0, reveals that the only critical value is x∗1 =
1
2
B. To

determine whether this is indeed a maximum, we must compute the
second derivative and evaluate it at x∗1. The second derivative is O

00 =

−
³
(x∗1 (B − x∗1))

− 1
2 −

¡
1
2
B − x∗1

¢2
(x∗1 (B − x∗1))

− 3
2

´
. If we evaluate

this second derivation at x∗1 =
1
2
B, it reduces to O00 = −2 < 0. Thus,

x∗1 =
1
2
B is a local maximum and produces an output of 1

2
B. It is easy

to see that it is also a global maximum since O(x∗1) =
1
2
B is greater

that O(0) = O(B) = 0.
6.1.6. Concavity and Convexity of Functions. Two important prop-

erties of functions are concavity and convexity. To illustrate these
concepts, consider Figure 12.7. A function that curves downward like
f1 is known as concave. We can verify it is concave if for any points
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like x1 and x2, the line between f(x1) and f(x2) lies below the function
between those two points. Formally,f : D → R is concave over the
set D if and only if f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2) for all
λ ∈ [0, 1] and x1, x2 ∈ D.
Alternatively, a function that curves upward like f2 is convex. We

can verify it is convex if for any points like x1 and x2, the line between
f(x1) and f(x2) lies above the function between those two points. For-
mally, f : D → R is convex over the set D if and only if f(λx1 + (1−
λ)x2) ≤ λf(x1) + (1 − λ)f(x2) for all λ ∈ [0, 1] and x1, x2 ∈ D. We
can extend the definition to the case of strict concavity and convexity
by replacing the weak inequalities with strict ones.
Concave and convex functions are critical because of the following:

• If f : D → R is concave and f 0(x∗) = 0, x∗ is a global maxi-
mum.

• If f : D→ R is convex and f 0(x∗) = 0, x∗ is a global minimum.

These statements are true because if f 0 exists concavity implies
f 00 < 0 and convexity implies that f 00 > 0.

Insert Figure 12.7 Here

6.1.7. Integral Calculus. Let F (x) be a function such that F 0(x) =
f(x). Then we say that F is the anti-derivative of f(x). We typically
write anti-derivatives in terms of the indefinite integral:

F (x) =

Z
f (x) dx

The laws of differentiation lead to the following results (where C is an
arbitrary constant). Check by differentiating the left side of each.

:
R
af(x)dx = a

R
f (x) dx

:
R
(f + g) dx =

R
fdx+

R
gdx

:
R
xndx = xn+1

n+1
+ C

:
R
1
x
dx = lnx+ C

:
R
exdx = ex + C

:
R
ef(x)f 0(x)dx = ef(x) + C

:
R
(f (x))n f 0(x)dx = f(x)n+1

n+1
+ C

:
R f 0(x)

f(x)
dx = ln f(x) + C

The most common use of the integral will be to measure the area
under a function. If F is the antiderivative of f , then the area under-
neath f between points a and b is given by the definite integral
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bZ
a

f (x) dx = F (a)− F (b)

Differentiation of the Definite Integral. The rules for differentiating
definite integrals are:

: d
dx

bR
a

f(x)dx =
bR
a

f 0(x)dx

: d
db

bR
a

f(x)dx = f(b)

: d
da

bR
a

f(x)dx = −f(a)

: d
dα

b(α)R
a(α)

f(x(α))dx =
bR
a

f 0(x(α)) ∂x
∂α
dx+ f (b(α)) ∂b

∂α
− f (a(α)) ∂a

∂α

6.2. Calculus of Several Variables. Consider the function y =
f (x) . It is often useful; to know how y changes given a change in one
of the elements of x. Typically, we will look at the partial effects of
xi: that, is how a change in xi effects y while assuming that the other
elements of x’s are held fixed. This is equivalent to examining the
behavior of the function within a given “slice”. Formally, the partial
derivative is

∂f

∂xi
= lim

h→0

f (x+ hi)− f (x)

h

where hi is a vector of zeros except for an h in the ith position. Partial
derivatives are as easy to take as regular derivatives by virtue of the
fact that we can treat all of the other variables as constants.

Example 12.6. Let f (x1, x2) = x1
x2
. Then ∂f

∂x1
= 1

x2
, ∂f
∂x2

= −x1
x22
.

We often write the collection of partial derivatives as the gradient
vector

Dxf =

µ
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

¶0
The gradient vector evaluated at x describes the behavior of the func-
tion near x.
6.2.1. Higher Order and Cross Partial Derivatives. Just as with

functions of a single variable, we can take higher-order partial derivative
to characterize the behavior of partial derivatives. The second partial
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derivative with respect to xi is written as

∂

∂xi

µ
∂f

∂xi

¶
=

∂2f

∂x2i

We can interpret exactly the same way as in the case of a single variable.
However, the case of more than a single variable, we may want to
know how derivatives change when other variables change. How does
changing xj effect the partial derivative with respect to xi? We can
write the cross partial derivative as

∂

∂xj

µ
∂f

∂xi

¶
=

∂2f

∂xj∂xi

Example 12.7. Let f (x1, x2) = x1
x2
. Then ∂2f

∂x21
= 0, ∂2f

∂x22
= −2x1

x42
,

∂2f
∂x1∂x2

= − 1
x22
, and ∂2f

∂x2∂x1
= − 1

x22
.

Note that ∂2f
∂x1∂x2

= ∂2f
∂x2∂x1

. This is true generally as ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

.
Thus, the order of partial differentiation does not matter.
Often we will denote the collection of second and cross derivatives

in the form of the Hessian matrix:

H =

⎡⎢⎢⎢⎢⎣
∂2f
∂x21

∂2f
∂x1∂x2

... ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

... ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

... ∂2f
∂x2n

⎤⎥⎥⎥⎥⎦
6.2.2. Implicit Function theorem*. Many equilibrium characteriza-

tions involve finding a value of x ∈ Rn that solves a system like

f(x;y) = 0

for a particular value of the parameters y ∈ Rk. When a closed form
solution for a solution x∗ exists we get an explicit relationship of the
form

x∗ = g(y).

If g is a differentiable function than comparative statics analysis, (find-
ing out how changes in y effect x) is straightforward. Sometimes
however, we can prove that a solution x∗ exists for each y but we can-
not directly solve for the function g(·). For example a fixed point
theorem may tell us that a solution to the system

f(x;y)− x = 0
exists, but we may not be able to analytically solve for the vector x.
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Under suitable conditions the implicit function theorem lets us im-
plicitly characterize the derivative Dyx

∗. We first present the result in
the case of one endogenous and one exogenous variable. Let x∗ solve
f(x, y) = 0.

Proposition 12.10. (Implicit Function Theorem) Let x∗ solve the
system at y∗. If f(·, ·) is continuously differentiable and ∂f(x∗,y∗)

∂x
6= 0

then for some open set A containing x∗ and an open set B containing
y∗ there exists a continuously differentiable function φ : B → A with
f(φ(y), y) = 0 and the derivative of this function at y∗ is given by

∂φ(y∗)

∂y
= −

∂f(x∗,y∗)
∂y

∂f(x∗,y∗)
∂x

To present the result in the more general case, we consider endoge-
nous vectors of the form x =(x1, ..., xn) ∈ Rn and exogenous vectors of
the form y = (y1, ..., yk) ∈ Rk. Suppose the system f(x,y) = 0 is of
the form

f1(x1, ..., xn; y1, ..., yk) = 0

·
·

fn(x1, ..., xn; y1, ..., yk) = 0.

The Jacobian matrix of this system with respect to the endogenous
variables is then the n by n matrix that stacks the transpose of the
Gradient vectors up

J =

⎡⎢⎢⎣
Dxf

0
1

.

.
Dxf

0
n

⎤⎥⎥⎦ .
Proposition 12.11. (Implicit Function Theorem) Given a pair

(x∗,y∗) for which x∗ is a solution to the system at y∗, if it is the
case that f1(·) through fn(·) are continuously differentiable in each co-
ordinate of x and y and the Jacobian matrix of the system with respect
to the endogenous variables, is non singular, (i.e. the determinant of
J is non-zero), then for some open set A containing x∗ and an open
set B containing y∗ there exists a continuously differentiable function
φ : B → A with f(φ(y),y) = 0 and the derivative of this function at
y∗ is given by,

Dyφ(y
∗) = − [Dxf(x

∗,y∗)]−1Dqf(x
∗,y∗)
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6.2.3. Optimization in Rn. Recall that if we want to maximize f :
R→ R, we need to look for values of x for which f 0 (x∗) = 0.1 If this
condition did not hold, some other x in a neighborhood of x∗ would
produce a larger value of f(x).
The same logic holds for optimizing multivariate functions. How-

ever, now we need the derivative with respect to each element of x to be
zero. Suppose this were not trues and that ∂f

∂xi
> 0. Then, the value

of the function would increase for a small increase in xi and decrease
for a small decrease. Similarly, we cannot have ∂f

∂xi
< 0 at an interior

optimum.
Given this discussion, it is clear that a necessary condition for x∗

to optimize f : Rn→ R is that

Df (x∗) = 0

The second order conditions for maxima and minima are based on
the Hessian matrix defined in the last section and require some more
advanced concepts in matrix algebra.2 However, we can state the
conditions for R2.

Definition 12.28. x∗ ∈ R2 is a local maximum if Df (x∗) = 0,
∂2f
∂x21

< 0, ∂
2f

∂x22
< 0, and ∂2f

∂x21

∂2f
∂x22

>
³

∂2f
∂x1∂x2

´2
.

Definition 12.29. x∗ ∈ R2 is a local minimum if Df (x∗) = 0,
∂2f
∂x21

> 0, ∂
2f

∂x22
> 0, and ∂2f

∂x21

∂2f
∂x22

>
³

∂2f
∂x1∂x2

´2
.

For a discussion of the general case, we refer the readers to Chiang
(2004), Simon and Blume (1994).
Example: Party Resource Allocations. Suppose a political party

wants to allocate its funds across two elections. The party values each
of these seats by W1 and W2 respectively (the party gets zero for each
seat it loses). Let xi

1+xi
be the probability that the party wins seat i

where xi is the amount of money it spends in election i. The cost of
spending xi is simply xi. Therefore, the party wishes choose (x1, x2)
to maximize:

x1
1 + x1

W1 +
x2

1 + x2
W2 − x1 − x2

1Since the domain is R, we need not worry about corner solutions.
2The sufficient condition for a maximum (minimum) is that H is positive

(negative) definite. A NxN matrix M is positive definite if for all vectors
v ∈ Rn, v0Mv > 0. It is negative definite if v0Mv < 0 for all v ∈ Rn.
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The first order conditions are

W1

(1 + x1)
2 − 1 = 0

W2

(1 + x2)
2 − 1 = 0

while the Hessian is "
− W1

(1+x1)
3 0

0 − W2

(1+x1)
3

#
From the first order conditions, we can see that there are four possi-
ble critical values:

¡
−
√
W1 − 1,−

√
W2 − 1

¢
,
¡√

W1 − 1,−
√
W2 − 1

¢
,¡

−
√
W1 − 1,

√
W2 − 1

¢
, and

¡√
W1 − 1,

√
W2 − 1

¢
.

Note however that the second order conditions require − Wi

(1+xi)
3 < 0

or xi > −1. Thus, since Wi > 0, the only critical value that satisfies
the second order condition is

¡√
W1 − 1,

√
W2 − 1

¢
.

6.2.4. Concave and Convex Functions. The definitions of concavity
and convexity that we have already encountered generalize easily to Rn.

Definition 12.30. Let U ⊆ Rn and f : U → R. The function
f is concave if for all x, y ∈U and λ ∈ [0, 1], f (λx+(1− λ)y) ≥
λf (x) + (1− λ) f (y) .

Definition 12.31. Let U ⊆ Rn and f : U → R. The function
f is convex if for all x, y ∈U and λ ∈ [0, 1], f (λx+(1− λ)y) ≤
λf (x) + (1− λ) f (y) .

Just as before, concavity guarantees that the critical values generate
global maxima while convexity guarantees global minima.

Theorem 12.8. Let f : U → R be be a twice differentiable function
where U is an open and convex subset of Rn. If f is a concave function
on U and Df(x∗) = 0 for x∗ ∈ U , then x∗ is a global maximum of f
on U . If f is a convex function on U and Df(x∗) = 0 for x∗ ∈ U ,
then x∗ is a global minimum of f on U .

6.2.5. Constrained Maximization.
Equality Constraints. In a number of contexts in political game

theory, it will be useful to solve constrained maximization problems.
Such constraints may arise either because of feasibility constraints on
agents choices or due to the behavior of other agents. Such problems
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will be assumed to take the form of

max f (x) subject to g1 (x) = 0

g1 (x) = 0

·
gk (x) = 0

where the function f : Rn → R1 and each of the functions gj : Rn → Rn

are assumed to be twice differentiable. Here we take a cook book
approach demonstrating how to analyze problems of this type.
The solution to this constrained optimization problem can be found

by setting up a somewhat different unconstrained optimization and
solving this translated problem. The trick is to incorporate the con-
straints as part of the objective function.
The Langrangian

L (x,λ) = f (x)−
kX

j=1

λjgj (x)

represents this translated objective function. Note that it depends
on both the choice variables x from our original problem and a new
vector of k variables. These new variables are called the constraint
multipliers (as each constraint gets its own multiplier). Note that
we started with a real valued objective function and k constraints and
translate the problem into an objective function that is the sum of k+1
real valued functions. The first order conditions for optimization of
the Lagrangian are

∂f(x)

∂xi
=

kX
j=1

λj
∂gj (x)

∂xi
for each i = 1, ..., n

gj (x) = 0 for each j = 1, ..., k

Analysis of the first n conditions yields necessary conditions on x for
a solution to the constrained problem. More formally,

Proposition 12.12. (Lagrangian Theorem) Assume that the gra-
dient vectors of the k constraint functions are linearly independent vec-
tors. If x∗ solves the constrained problem then there exists a vector of
Lagrangian multipliers λ ∈ Rk for which (x∗,λ) solve the above first
order conditions.

The motivation for translating the constrained problem to this un-
constrained problem is best obtained by inspecting the first n first
order conditions of the Lagrangian. They require that any increase
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in the value of f obtained by changing x (from a solution to the first
order conditions) results in a corresponding change in the value of at
least one of the constraint functions g. In other words, if x solves the
Lagrangian than any improvement in f would come at the expense of
violating the constraint. Note that the independence requirement for
the procedure to work is that the Jacobian of the constraints with re-
spect to the variables x have rank k, (that is the gradient vectors of
the k constraints are independent). Without this constraint qualifica-
tion condition it need not be the case that a change in

Pk
j=1 λj

∂gj(x)

∂xi
corresponds to a violation of the constraint.
Application: Party Resource Allocations. Suppose now we assume

that the party has a budget constraint that it must satisfy when allo-
cating funds across districts. Now the party wishes to maximize:

x1
1 + x1

W1 +
x2

1 + x2
W2

subject to B = x1 + x2

The Lagrangian is x1
1+x1

W1 +
x2
1+x2

W2 + λ (x1 + x2 −B) while the first
order conditions are W1

(1+x1)
2 − λ = 0, W2

(1+x2)
2 − λ = 0, and x1 + x2 = B.

The first two conditions imply that

W2

W1
=
(1 + x2)

2

(1 + x1)
2 or

r
W2

W1
=
(1 + x2)

(1 + x1)

Together with the budget constraint, we have two equations and two

unknowns. Using the positive roots, we have +
q

W2

W1
= (1+B−x1)

(1+x1)
which

imply that x∗1 =
1+B−

q
W2
W1q

W2
W1

+1
and x∗2 =

1+
q

W2
W1

(B−1)q
W2
W1

+1
.

Inequality Constraints. The problem considered above requires that
the constraints are of the form gj (x) = 0. A larger class of opti-
mization problems require only that a system of inequality or equality
constraints be satisfied. The general problem is then

max f (x) subject to g1 (x) = 0

gj (x) = 0 for j = 1, .., k

gt (x) ≤ 0 for t = 1, .., w
Again we assume that all of the relevant functions are differentiable.
The Kuhn-Tucker conditions are similar to the Lagrangian conditions
save how the inequality constraints are treated. The relevant trans-
lated first order conditions are
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∂f(x)

∂xi
=

kX
j=1

λj
∂gj (x)

∂xi
+

wX
t=1

λt
∂gt (x)

∂xi
for each i = 1, ..., n

gj (x) = 0 for each j = 1, ..., k

λtgt (x) = 0 for each t = 1, ..., w

The difference is that for inequality constraints, either the constraint
binds (in the sense that gt (x) = 0 or the multiplier λt is zero.
The Envelope Theorem*. In applications the objective function or

the constraints may also depend on exogenous variables y = (y1, ..., yl, ..yz) ∈
Rz. Consider the problem

max f (x;y) subject to g1 (x;y) = 0

gj (x;y) = 0 for j = 1, .., k

gt (x;y) ≤ 0 for t = 1, .., w
By v(y) we denote the value function which is a mapping v : Rz → R1
with v(y) = f(x∗(y);y) where x∗(y) is a solution to the optimization
problem above. The theorem of the maximum indicated that under
suitable conditions the value function is continuous. We can use cal-
culus to gain more insight into the dependence of the value function on
the exogenous parameters.

Proposition 12.13. Assume that v(y0) is differentiable at y0 and
that (x∗(y0), λ(y0)) solves the above problem and on some open set A
containing x∗(y0) and some open set B containing y0 the set of con-
straints which bind on the solution x∗ : B → A is constant , then for
each i = 1, .., n

∂v(y0)

∂yl
=

∂f
¡
x∗(y0);y

¢
∂yl

−
kX

j=1

λj
∂gj

¡
x∗(y0);y

¢
∂yl

−
wX
t=1

λt
∂gt
¡
x∗(y0);y

¢
∂yl

.

The novelty of this result is that in characterizing ∂v(y0)
∂yl

we do not
need to worry about Dylx

∗(y).
6.2.6. Multivariate Integrals. We can also calculate the area under

multivariate functions with the use of the multivariate definite integral

b1Z
a1

...

bnZ
an

f (x1, ..., xn) dx1...dxn

Multivariate integrals are calculated by taking sequentially integrat-
ing with respect to one variable while holding the remaining constant.
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Suppose that we integrated with respect to x1. Let F1 (x1, ..., xn) be
the partial anti-derivative with respect to x1, then

b1Z
a1

...

bnZ
an

f (x1, ..., xn) dx1...dxn

=

b2Z
a2

...

bnZ
an

F1 (b1, ..., xn) dx2...dxn −
b2Z

a2

...

bnZ
an

F1 (a1, ..., xn) dx2...dxn

We can continue this iterative process by taking the partial anti-derivative
of F1 with respect to x2 and so on. It does not matter which definite
partial integral that we compute first.

Example 12.8. Consider
2R
1

1R
1
2

x2ydxdy. Now we begin by com-

puting F1(x, y) =
1
3
x3y. Then

2R
1

1R
1
2

x2ydxdy =
1R
1
2

8
3
ydy −

1R
1
2

1
3
ydy =

8
3

£
1
2
− 1

8

¤
− 1

3

£
1
2
− 1

8

¤
= 7

8
.

7. Probability Theory

As we saw in chapter 3, models of decision making under uncer-
tainty are heavily dependent upon probability theory. In this section,
we outlines the basics of probability and review some of the basic re-
sults.

7.1. Outcomes and Events. The building blocks of probability
theory are outcomes and events. Let S is the set of all possible out-
comes that can be generated by a random process. Such a set is known
as a sample space. A generic element s ∈ S is called an outcome.

Example 12.9. Flipping two coins. S = {HH,HT, TH, TT}.
Example 12.10. Unemployment rates: S = [0, 100]

The first example is that of a discrete sample space because the
number of outcomes is finite while the latter is a continuous sample
space as the number of outcomes is infinite.
Given a sample space, we define an event as a subset A ⊆ S . Thus,

an event is any combination of outcomes.

Example 12.11. A = {TH,HT} “flip two is different that flip
one”

Example 12.12. A = [4, 13] “unemployment is between 4 and 13%”
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7.2. The Axioms of Probability Theory. Probability theory
concerns itself with the likelihood that various events occur. We let
Pr(A) denote be the probability of event A occurs. Classical prob-
ability theory is based one the following axiomatic statements about
Pr(A).

Axiom 12.1. For any event A, Pr(A) ≥ 0.

Axiom 12.2. Pr(S) = 1

Axiom 12.3. Let A1, A2, . . . be an infinite sequence of disjoint

events then Pr
µ∞S
i=1

Ai

¶
=

∞P
i=1

Pr (Ai) .

Axiom 1 says simply that the probability of any event is non-
negative while axiom 2 says that the probability that some event occurs
is 1. Axiom 3 concerns the probability of mutually exclusive or disjoint
events. It states that the probability of one of an infinite set of mutu-
ally exclusive events is equal to the sum of the individual events. These
axioms lead directly to a number of useful properties of probabilities..
The probability of the null event is zero.

Theorem 12.9. Pr(φ) = 0.

Axiom 3 extends directly to the case of a finite number of disjoint
events.

Theorem 12.10. Let A1, A2, . . . , An be a finite sequence of disjoint

events then Pr
µ

nS
i=1

Ai

¶
=

nP
i=1

Pr (Ai) .

The previous theorem plus axioms 1 and 2 imply that the proba-
bilities of an event and its complement sum to one.

Theorem 12.11. Let S|A be the complement of A, then Pr(A) +
Pr(S|A) = 1.

A direct implication of the previous theorem is that the probability
of any event is less than one.

Theorem 12.12. For any event A, 0 ≤ Pr(A) ≤ 1.

If the outcomes associated with event B are a proper subset of those
associated with event A, the probability of event A have to be at least
as large as the probability of B.

Theorem 12.13. If A ⊂ B, then Pr(A) ≥ Pr(B).
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The next two theorems concern the probability of a union of events.
With just two events A and B, we can decompose A ∪ B into three
disjoint sets A|B, B|A, and A ∩ B. Thus, Pr(A ∪ B) = Pr(A|B) +
Pr(B|A)+Pr(A∩B) from Theorem 12.10. Theorem 12.10 also suggests
that Pr(A) = Pr(A|B)+Pr(A∩B) and Pr(B) = Pr(B|A)+Pr(A∩B).
These results produce Theorem 12.14.

Theorem 12.14. For any two events A and B, Pr(A ∪ B) =
Pr(A) + Pr(B)− Pr(A ∩B).
Theorem 12.15 is a straightforward generalization of Theorem 12.14.

Theorem 12.15. For any n events A1, A2, . . . , An,

Pr

µ
nS
i=1

Ai

¶
=

nP
i=1

"
Pr (Ai)−

nP
j>i

Pr (Ai ∩Aj) +
nP

k>j>i

Pr (Ai ∩Aj ∩Ak)− ...

#
.

7.2.1. Dependence and Conditional Probability. We now turn to the
question of how the likelihood of distinct events are related. We are
concerned with whether the occurrence of one event effects the prob-
ability of another. Consider two events A and B. Suppose we know
that event B has occurred what is the probability that event A will
occur?
One obvious possibility is that the likelihoods of the events are

unrelated. We say that two events A and B are independent if Pr(A∩
B) = Pr(A) Pr(B). When events are independent, the realization of
one event has no effect on the probability of the other. Suppose that
event B occurs, then Pr(A ∩ B) simply Pr(A). Thus, the occurrence
of A is not effected by the occurrence of B. This logic extends to a
general definition of independence.

Definition 12.32. Let A1, . . . ,An be a set of events. They are

independent if Pr
µ

nT
i=1

Ai

¶
=

nQ
i=1

Pr (Ai) .

For this to be true, any subset of the events must also be indepen-
dent. See DeGroot and Schervish. (2001) for an example where 3
events are pairwise independent but not independent.
Now we turn to cases where there is dependency among events.

A key concept for analyzing such relationships is that of conditional
probability. Given two events A and B, the conditional probability of
A given B is the probability that A occurs given that B has occurred.
We denote the conditional probability of A given event B as:

Pr(A|B) = Pr(A ∩B)
Pr(B)

assuming Pr(B) > 0
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Note that if A and B are independent, Pr(A|B) = Pr(A). It is also
easy to see that conditional probabilities must satisfy Pr(A ∩ B) =
Pr(A|B) Pr(B) = Pr(B|A) Pr(A). This multiplication rule generalizes
to

Pr

Ã
n\
i=1

Ai

!
= Pr(A1)

nY
i=2

Pr

Ã
Ai|

i=1\
j=1

Ai

!
7.3. Bayes’ Theorem. One of the most important uses of proba-

bility theory in political game theory is its predictions about how agents
use observed events to make assessments about the probability of unob-
served events. Bayes’ Theorem specifies exactly how such assessments
are formed. Before stating and proving this theorem, we need an ad-
ditional definition. A partition is simply a group of mutually exclusive
events that cover the entire sample space.

Definition 12.33. A partition of a sample space S is a set of dis-

joint events A1,..,Ak such that Pr
µ

kS
i=1

Ai

¶
= S.

We can now state Bayes’ Theorem.

Theorem 12.16. If A1,..,Ak form a partition of S, Pr(B) > 0
Pr(Ai) > 0 for all i

Pr(Aj|B) =
Pr(Aj) Pr(B|Aj)
kP
i=1

Pr(Ai) Pr(B|Ai)

Proof. The proof proceeds in a number of steps.
Claim 1: If A1,..,Ak is a partition of S and B is a subset of S, the

sets A1 ∩ B, ..., Ak ∩ B form a partition of B. This follows from the

fact that
kS
i=1

(Ai ∩B) =
kS
i=1

Ai ∩B = S ∩B = B.

Claim 2: If A1,..,Ak form a partition of S, Pr(B) =
kP
i=1

Pr (Ai ∩B) .
This is a direct application of Claim 1 and Theorem 12.10.
Claim 3: If A1,..,Ak form a partition of S and Pr(Ai) > 0 for all

i, then Pr(B) =
kP
i=1

Pr(B|Ai) Pr(Ai). This is an application of Claim

2 and the multiplication rule for conditional probabilities.
Now we can prove the main result. Note that if Pr(B) > 0, the

definition of conditional probability implies that

Pr(Aj|B) =
Pr(Aj ∩B)
Pr(B)
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Bayes’ Law follows from the substitution of Pr(Aj∩B) = Pr(B|Aj) Pr(Aj)

for the numerator and Pr(B) =
kP
i=1

Pr(B|Ai) Pr(Ai) for the denomina-

tor. ¤

7.4. Random Variables and Distributions. It is often conve-
nient to use numerical representations of outcomes and events. Such
representations are known as random variables. A random variable is
simply a function that maps all possible outcomes into real numbers.

Definition 12.34. Let X : S → R for some sample space S. Then
X is a random variable that assigns a real number X(s) to each
possible outcome s ∈ S.

Given this definition of random variables, it is straightforward to
define events as sets of real numbers and to define probability dis-
tributions over the random variables. A distribution is simply an
assignment of probabilities to such events.

Definition 12.35. Let A be any subset of R and let Pr(X ∈ A) de-
note the probability that X is in A. Then Pr(X ∈ A) = Pr{s : X(s) ∈
A}. A probability distribution of X is an specification of Pr(X ∈ A)
for all A ⊂ R.

7.4.1. Discrete Distributions. A random variable X has a discrete
distribution if it can take on only a finite number of outcomes: x1, x2, . . . , xk.
We call this set of possible outcomes the support of the distribution.

Definition 12.36. If a random variable has a discrete distribution,
the probability function (pf.) f of X is defined as f(x) = Pr(X = x)
for any real number x.

If x is not equal to one of the points in the support of X, then
f(x) = 0. By the axioms of probability theory, we know that 0 ≤
kP
i=1

f(xi) ≤ 1 and 0 ≤ f(xi) ≤ 1.

Example 12.13. The Uniform Distribution over Integers: Suppose
that the value of X is equally likely to be one of k integers 1, 2, 3, . . . k.
Then the pf is

f(x) =

½
1
k
for x = 1, ..., k

0 otherwise

Example 12.14. The Binomial Distribution: Suppose an experi-
ment succeeds with probability p and fails with probability 1− p. The
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pf for x successes out of n trials is given by:

f(x) =

½ ¡
n
x

¢
px(1− p)n−x for x = 0, ..., n

0 otherwise

where
¡
n
x

¢
= n!

x!(n−x)! .

7.4.2. Continuous Distributions. Suppose that X can take on an
infinite number of values. Then we say that X is a continuous random
variable. If X is a continuous random variable, then there exists a
non-negative function f such that for any interval A = [a, b]

Pr(X ∈ A) =

Z
A

f(x)dx =

bZ
a

f(x)dx

The function f is known as the probability density function (or pdf).
It does not tell us the Pr(X = x) (which is 0) but the limPr(X ∈
[x− �, x+ �]) as � goes to 0. Every pdf must satisfy the following:

f(x) > 0 for all x
∞Z

−∞

f(x)dx = 1

The set Xs = {x : f(x) > 0} is known as the support of X.

Example 12.15. The Uniform Distribution on an Interval: Let a
and b be two real numbers. Consider an experiment where in which a
point X is chosen from S = [a, b] where the probability that X belongs
to any subinterval is proportional to the length of that subinterval. This
implies that the pdf must be the same on any point in S and 0 otherwise.

Thus,
∞R
−∞

f(x)dx =
bR
a

f(x)dx =
bR
a

cdx = 1. Solving the integral for c,

we obtain that c = 1
b−a . Thus, the pdf for the uniform distribution is

f(x) =

½
1

b−a for x ∈ [a, b]
0 otherwise

7.4.3. The Cumulative Distribution Function. The cumulative dis-
tribution function (cdf) is a real-valued function that relates for any
real number the probability that X takes on a lower value:

F (x) = Pr(X ≤ x)
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For discrete distributions, F (x) =
P

{i:xi<x}
f(xi). For continuous dis-

tributions, F (x) =
xR

−∞
f(ξ)dξ. Note that at any point in which F is

differentiable, we have F 0(x) = f(x). Thus, continuous random vari-
able can be represented either by the pdf of the cdf.
The following are some important properties of the cdf.

(1) Pr(X > x) = 1− F (x).
(2) Pr(x2 > X ≥ x1) = F (x2)− F (x1).
(3) F is non-decreasing i.e. if x2 > x1 then F (x2) ≥ F (x1).
(4) lim

x→−∞
F (x) = 0 and lim

x→∞
F (x) = 1.

(5) F is always continuous from the right. It may be discontinu-
ous from the left at x if x occurs with a positive probability.
See Figure 12.8.

Insert Figure 12.8 Here
7.4.4. Bivariate Distributions. Sometimes we will be concerned with

the probabilities of two or more random variables, say X and Y , si-
multaneously. One useful tool for analyzing two random variables is
the joint distribution which characterizes the probability of pairs of
realizations of X and Y .
Discrete Bivariate Probability Functions. For the case of two dis-

crete random variables, the bivariate probability function is given by

f(x, y) = Pr{X = x and Y = y}.
Let x1, . . . ., xk and y1, . . . , ym be the support of X and Y respectively,
then f(x, y) must satisfy the following properties:

(1)
kP
i=1

mP
j=1

f(xi, yj) = 1.

(2) LetA be any set of combinations of {x1, . . . ., xk} and {y1, . . . , ym}
then Pr{(x, y) ∈ A} =

P
(xi,yj)∈A

f(xi, yj).

Continuous Bivariate Density Functions. IfX and Y are continuous
random variables, the bivariate density is defined by

Pr{(x, y) ∈ A} =
ZZ
A

f(x, y)dxdy

for anyA ⊂ R2. The bivariate pdf must satisfy the following properties:
(1) For any (x, y) ∈ R2, f(x, y) > 0.
(2)

RR
R2

f(x, y) = 1.
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Bivariate Distribution Function. We can also generalize the notion
of the cdf to bivariate distributions. The joint distribution function
can be denoted by

F (x, y) = Pr{x ≤ X and y ≤ Y }

We can use the joint distribution function to determine the probability
that (x, y) lies in a rectangle [a, b]x[c, d]

Pr(a < X < b & c < Y < d) = Pr(a < X < b & Y < d)−Pr(a < X < b&Y < c)

= Pr(X < b & Y < d)− Pr(X < a & Y < d)−
Pr(aX < b & Y < c)− Pr(X < a & Y < c)

= F (b, d)− F (a, d)− F (b, c) + F (a, c)

We can derive the distribution functions of X and Y (Fx and Fy) from
the joint distribution function:

Fx(x) = lim
y→∞

F (x, y)

Fy(y) = lim
x→∞

F (x, y)

7.4.5. Marginal Distributions. Suppose we know the joint pdf of X
and Y . We can get the probability density of each of them individually.
These distributions of the individual random variables are know as
the marginal distributions. For discrete distributions, the marginal
probability functions fx and fy are defined by

Pr(X = x) = fx(x) =
X
y

Pr(x = X and y = Y ) =
X
y

f(x, y)

Pr(Y = y) = fy(y) =
X
x

Pr(x = X and y = Y ) =
X
x

f(x, y)

For continuous random variables, the marginal density functions are

fx(x) =

∞Z
−∞

f(x, y)dy

fy(y) =

∞Z
−∞

f(x, y)dx
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7.5. Independent Random Variables. We know that if X and
Y are independent random variables, the Pr(X = x and Y = y) =
Pr(X = x) Pr(Y = y). This implies that

F (x, y) = Fx(x)Fy(y)

where Fx and Fy are the marginal cdfs. It is also true that

f(x, y) = fx(x)fy(x)

where fx and fy are marginal probability (density) functions.

7.6. Conditional Distributions. Suppose that X and Y are not
independent. Then we can define conditional distributions of X given
Y and Y given X. The derivation of the conditional distributions fol-
low directly from the definition of conditional probability given above.
For the the discrete case, the conditional probability functions gx(x|y)
and gy(y|x) are defined as follows.

gx(x|y) = Pr(X = x|Y = y) =
Pr(X = x and Y = y)

Pr(Y = y)
=

f(x, y)

fy(y)

gy(y|x) = Pr(Y = y|X = x) =
Pr(X = x and Y = y)

Pr(X = x)
=

f(x, y)

fx(x)

For continuous random variables,

gx(x|y) =
f(x, y)

fy(y)

gy(y|x) =
f(x, y)

fx(x)

7.7. The Expectation of a RandomVariable. One of the most
important features of any probability distribution is its expectation or
central tendency. The expectation of a random variable is the average
over all of its realizations weighted by its probability. For discrete
distributions, the expectation of X or E(X) is defined as

E(X) =
X
x

xf(x).

For continuous distributions,

E(X) =

∞Z
−∞

xf(x)dx

Often in this book, we will be interested in expectations of functions

of a random variable. Let Y = r(X), then E(Y ) =
∞R
−∞

r(x)f(x)dx.



7. PROBABILITY THEORY 333

The expectation functions must satisfy the following properties:
(1) If Y = a+ bX, then E(Y ) = a+ bE(X).
(2) If there exists a such that Pr(X ≥ a) = 1, then E(X) ≥ a. If

there exists b such that Pr(X ≤ b) = 1, E(X) ≤ b.
(3) IfX1, . . . , Xn are random variables, E(X1+. . .+Xn) = E(X1)+

. . .+E(Xn).
(4) If X1, . . . , Xn are INDEPENDENT random variables, then

E

µ
nQ
i=1

Xi

¶
=

nQ
i=1

E(Xi).

7.8. The Variance of a Random Variable. Another important
property of a random variable is the extent to which it deviates from
its expected value. One such measure is the variance defined as

var(X) = σ2x = E
£
(X −E(X))2

¤
.

The variance function must satisfy a number of properties.
(1) If there exists c such that Pr(X = c) = 1, var(X) = 0.
(2) For any constants a and b, var(a+ bX) = b2var(X)
(3) For any random variable X, var(X) = E(X2)− [E(X)]2
(4) If X1, . . . , Xn are INDEPENDENT random variables, then

var

µ
nP
i=1

Xi

¶
=

nP
i=1

var(Xi).

7.9. TheMedian and theMode. Two other important function
that help to summarize random variables are the median and the mode.
The Median: Let F be the cdf of X. A point m is the median of X

if and only if Pr(X ≤ m) ≥ .5 and Pr(X ≥ m) ≤ .5 or (for continuous
distributions) F (m) = .5.
The Mode: Let f be the pf or pdf of X. Then a number m is a

mode of X if and only if m ∈ argmax f(x).

7.10. Covariance and Correlation. Given a joint distribution
over (X,Y ), we are often interested in describing the relationship be-
tween X and Y. In particular, we would like to know the extent to
which they move together or covary. To this end, the covariance is
defined as

cov(X,Y ) = σxy = E
£
(X − µx) (Y − µy)

¤
where µx = E(X) and µy = E(Y ).
If X and Y move “together”, the covariance is the expectation of

a positive function and therefore positive. If X and Y move “against
one another”, the covariance is the expectation of a negative function
and is therefore negative.
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The covariance has a scaling problem. Consider the covariance ofX
and Z = aY +b. It is straightforward to show that σxz = aσxy. Thus,
the covariance depends on how variables are scaled. The correlation
adjusts for this problem. Formally, the correlation between X and Y
is

ρxy =
σxy
σxσy

Covariances and correlation coefficients have to satisfy the following
properties.

(1) For any random variables X and Y with finite variances, 1 ≥
ρxy ≥ −1.

(2) For any random variables X and Y , σxy = E(XY )− µxµy.
(3) For independent random variables X and Y with finite vari-

ances, σxy = ρxy = 0.
(4) For random variable X with a finite variance and Y = aX+b,

ρxy = 1 if a > 0 and ρxy = −1 if a < 0.
(5) For any random variablesX and Y with finite variances, var(X+

Y ) = σ2x + σ2y + 2σxy.

(6) IfX1, . . . , Xn are random variables with finite variances, var(
nP
i=1

Xi) =

nP
i=1

σ2i + 2
nP
i=1

nP
j=i+1

σij.

7.11. Conditional Expectation. Often we are interested in com-
puting expectations of random variables conditioned on the outcomes
of other random variables. The conditional expectation function is
defined as:

E(Y |x) =
X
y

ygy(y|x)

E(Y |x) =
∞Z

−∞

ygy(y|x)dy

The conditional expectation is function of X and has a distribution de-
rived from the distribution ofX. An important property of conditional
expectations is the Law of Iterated Expectations.

E(E(Y |X)) = E(Y )
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Figure 10.2:  Veto Bargaining with Incomplete Information 
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Figure 10.3:  Proposals in Cheap-talk Game 
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Figure 10.4 
Proposals in “Babbling Equilibrium” 
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Figure 10.5 

Conditions for Equilibrium Vetoes in the Blame Game Model 
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Figure 12.2 
Functions



 
 
 
 
 
 

 
                                                   
                                                       
 
 
                                                     
 
 
 
                                                                                                 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 12.3 
Derivatives
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Second Derivatives
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Figure 12.8 

Discontinuous Cumulative Density 
Functions 
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