Triggers and Events

Kathleen Durant PhD
CS 3200

Lecture Outline

* Trigger Description
* My SQL trigger example
* My SQL event example

Triggers

Trigger: procedure that starts automatically if specified
changes occur to the DBMS

A trigger has three parts:

Event
Change to the database that activates the trigger

Condition
Query or test that is run when the trigger is activated

Action

Procedure that is executed when the trigger is activated and its
condition is true

Trigger Options

* Event can be insert, delete, or update on DB table
* Condition:
Condition can be a true/false statement
All employee salaries are less than $100K
Condition can be a query
Interpreted as true if and only if answer set is not empty
* Action can perform DB queries and updates that depend on:
Answers to query in condition part

Old and new values of tuples modified by the statement that
activated the trigger

Action can also contain data-definition commands, e.g., create
new tables

When to Fire the Trigger

* Triggers can be executed once per modified record or once per
activating statement
Row-level trigger versus a Statement Level Trigger

Trigger looking at the set of records that are modified versus the actual
individual values of the old and the new values

» Should trigger action be executed before or after the statement
that activated the trigger?

Consider triggers on insertions

Trigger thatinitializesa variable for countinghow many new tuples are
inserted: execute trigger beforeinsertion

Trigger that updates this count variable for each inserted tuple: execute
after each tuple is inserted (might need to examine values of tuple to

determine action) {
. | . 5)
Trigger can also be run in place of the action

Trigger Example

* CREATE TRIGGER YoungSailorUpdate
AFTER INSERT ON SAILORS
REFERENCING NEW TABLE NewsSailors
FOR EACH STATEMENT
INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewsSailors N

) WHERE N.age <= 18
Trigger has ©

access to
NEW and
OLD values

Trouble with Triggers

* Action can trigger multiple triggers

Execution of the order of the triggers is arbitrary

Challenge: Trigger action can fire other triggers

Very difficult to reason about what exactly will happen
Trigger can fire “itself” again

Unintended effects possible
* Introducing Triggers leads you to deductive databases
Need rule analysis tools that allow you to deduce truths about the data

MY SQL limits the use of
triggers

* Triggers not introduced until 5.0
* Not activated for foreign key actions
* No triggers on the mysqgl system database

* Active triggers are not notified when the meta data of the
table is changed while it is running

* No recursive triggers

* Triggers cannot modify/alter the table that is already being
used

For example the table that triggered it

MY SQL Trigger

CREATE TRIGGER <trigger-name> trigger _time trigger_event
ON table_name
FOR EACH ROW
BEGIN

END
* Syntax
Trigger _time is [BEFORE | AFTER]
Trigger_event [INSERT|UPDATE | DELETE]
Other key words — OLD AND NEW

Naming convention for a trigger
trigger time_tablename_trigger event
Found in the directory associated with the database

File tablename.tdg— maps the trigger to the correspnoding table
Triggername.trn contains the trigger definition

Reviewing your trigger

* Go to the trigger directory and read the file (.trg)
Program Data\MySQL\MySQL5.5\data\<db-name>*.trg

* Use the DBMS to locate the trigger for you
Triggersin current schema

SHOW TRIGGERS;

ALL Triggers in DBMS using the System Catalog

SELECT * FROM Information_Schema.Triggers

WHERE Trigger schema = 'database_name' AND
Trigger _name = 'trigger name’;

select trigger _schema, trigger name, action_statement
from information_schema.triggers;

Changing your trigger

There is no edit of a trigger
CREATE TRIGGER ...

DROP TRIGGER <TRIGGERNAME>;
CREATE TRIGGER ...

Events

* MySQL Events are tasks that run according to a schedule.
* An event performs a specific action

* This action consists of an SQL statement, which can be a
compound statement in a BEGIN END block

* An event's timing can be either one-time or recurrent

If recurrent can state an interval that determines how often it
gets run

Can specify a time window to state when the event is active

* an event is uniquely identified by its name and the schema to
which it is assighed

* an event is executed with the privileges of its definer/author
* Errors and warnings from an event are written to the log

Events

CREATE EVENT ‘event_name’
ON SCHEDULE schedule
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE | DISABLE ON SLAVE] --CLUSTERdb
DO BEGIN
. -- event body
END;

DROP EVENT ‘event_name’
ALTER EVENT ‘event_name’

Options for a Schedule

* Run once on a specific date/time:

AT ‘YYYY-MM-DD HH:MM.SS’
e.g. AT 2011-06-01 02:00.00°

* Run once after a specific period has elapsed:

AT CURRENT_TIMESTAMP + INTERVALn
[HOUR|MONTH | WEEK | DAY | MINUTE]
e.g. AT CURRENT_TIMESTAMP + INTERVAL 1 DAY

* Run at specific intervals forever:

EVERY n [HOUR|MONTH | WEEK | DAY | MINUTE]
e.g. EVERY 1 DAY

Run at specific intervals during a specific period:

EVERY n [HOUR|MONTH |WEEK|DAY|MINUTE] STARTS date
ENDS date

e.g. EVERY 1 DAY STARTS CURRENT_TIMESTAMP + INTERVAL 1

WEEK ENDS 2012-01-0100:00.00’

Summary

* Triggers respond to changes in the database
Allows you to define constraints on the data

* Events allow you to schedule tasks to be done by a calendar
date or an interval

