
CSCB20 – Week 8

Introduction to Database and
Web Application Programming

Anna Bretscher*

 Winter 2017
*thanks to Alan Rosselet for providing the slides these are adapted from.

Web	
 Programming	

We have seen how HTML and CSS work together to create a
Web page (HTML) with styling details applied (CSS)

When you type a URL for an HTML document into a browser
window:

o  browser sends a request to the server (cmslab/mathlab in this
case),

o  the server locates the requested file (test.html),
o  sends that file back to the browser to be rendered

Rather than providing the name of a file in a URL, it is possible to
give the name of a program:

o  server executes the program
o  sends its output back to the browser to be rendered, e.g.:
https://mathlab.utsc.utoronto.ca/…/hello.php

What	
 is	
 PHP?	

PHP == ‘PHP Hypertext Preprocessor’.

o  Free and open-source, server-side scripting language
designed specifically for the Web

o  Used to generate dynamic web-pages

o  Supported by most Web servers

PHP scripts
o  are bracketed by reserved PHP tags

o  supports embedding of PHP scripts within HTML pages

o  easy to learn operational behavior and common
patterns for working with Web pages

PHP	
 Overview	
 (cont’d)	

•  Interpreted language

•  Scripts are parsed at run-time rather than
compiled beforehand

•  Executed on the server-side

•  Source-code not visible to client

•  ‘View Source’ in browsers does not display PHP
code, only output produced by PHP code

•  Various built-in functions allow for fast
development

•  Compatible with many popular databases

•  LAMP (Linux, Apache, MySQL, PHP) is a common
Web application platform – all components are
free, open-source

•  Syntax Perl- and C-like syntax. Relatively easy to
learn

•  Large function library

•  Embedded directly into HTML

•  Interpreted, no need to compile

•  Loosely typed, like Python and JavaScript

PHP Overview

PHP is but one of many server-side languages for
developing dynamic Web app’s, other options include:

o  Java Servlets with JSP, Ruby on Rails, ASP .Net

Why choose PHP?

o  easy deployment – no complex infrastructure to set up

o  compatible: supported by most popular Web servers

o  simple: lots of built-in functionality; familiar syntax

o  free and open source: anyone can run a PHP-
enabled server free of charge

o  available: installed on most commercial Web hosts,
and on UTSC servers, including mathlab

Why PHP?

browser requests .html file (static content);
o  server sends file content

browser requests .php file (dynamic content);
o  server reads file,
o  executes any embedded script content,
o  sends output of script back to browser.

PHP Web Page Request Lifecycle

What does PHP code look like?
•  Supports	
 procedural	
 and	
 object-­‐oriented	
 paradigms	

•  All	
 PHP	
 statements	
 end	
 with	
 a	
 semi-­‐colon	

•  Each	
 PHP	
 script	
 must	
 be	
 enclosed	
 in	
 the	
 reserved	
 PHP	

tag,	
 denoted	
 by	

•  PHP	
 code	
 block	
 may	
 contain	
 statements,	
 funcFon	

definiFons,	
 variable-­‐value	
 references	

<?php
 …
?>

<!-– hello.php -->
<html><body>
 Hello World!

 <?php print "<h2>Hello, World</h2>"; ?>
</body></html>

Hello World in PHP

Output generated by PHP “print” and “echo” statements is
inserted into the HTML returned to the browser.

Q. How do you view the output of a PHP script from a browser?

Place hello.php in your cscb20w17_space directory, then view in
a browser with URL:

https://mathlab.utsc.utoronto.ca/courses/cscb20w17/UTORid/hello.php

Variables in PHP
•  PHP variables begin with a “$” sign, both for

declaration and value reference

•  Case-sensitive ($Foo != $foo != $fOo)

•  Global and locally-scoped variables
o  global variables can be used anywhere
o  local variables restricted to a function or class

•  Certain variable names reserved by PHP
o  Form variables ($_POST, $_GET)
o  Server variables ($_SERVER)
o  Etc.

Variable Usage and Comments

<?php
$foo = 25; // Numerical variable
$bar = “Hello”; // String variable

$foo = ($foo * 7); // Multiplies foo by 7
$bar = ($bar * 7); // Invalid expression
?>

single-line comments are written as one of:

// single-line comment

single-line comment
multi-line comments bracketed by

	
 	
 	
 	
 	
 /* multi-line comment ...
 */

Data Types
PHP is a loosely-typed language, like Python

PHP basic types are:

o  int, float, boolean, string, array, object, NULL
o  functions is_type() test whether a variable has a certain

type, e.g. is_string($myvar)

Conversion between types is automatic in many
cases, e.g.:

o  string to int for “+”
o  int to float for “/”

Types can be “cast” to another type using:

$int_val = (int) “33”;

Strings
 $myvar = "hello";
 print $myvar[1]; # prints “e”

square bracket notation for 0-based indexing

concatenation using “.”	
 operator (not “+”)

 print $myvar . "world"; # prints hello world	

strings quoted with double quotes are “interpreted”, meaning that
embedded variables have their values inserted

strings quoted with single quotes are not interpreted

 print "$myvar world"; # prints hello world
 print '$myvar world'; # prints $myvar world	

for	
 	
 loop
for (initialization; condition; update) {
 statements

}

uses same syntax as Java

for ($i = 10; $i >= 0; $i--) {

 print "$i cubed is " . $i * $i * $i . ".\n";

}	

for	
 	
 loop	

for (initialization; condition; update) {
 statements

}

uses same syntax as Java

$name = "preprocessor";

for ($i = 0; $i < strlen($name); $i++) {

 print "The next letter is".{$name[$i]}.”\n";
}	

if/else	
 	
 statement	

if (condition) {
 statements;

} elseif (condition) {
 statements;

} else {

 statements;
}

•  elseif clause and else clause are both optional
•  multiple elseif clauses may be used

<?php
if ($user==“John”) {
 print “Hello John.”;
}
else {
 print “You aren’t John.”;
}
?>

while	
 	
 loop	

same syntax as Java

while (condition) {
 statements;

}

 or

do {

 statements;
} while (condition)

<?php
 $count=0;
 while($count<3) {

 print “hello PHP. ”;
 $count += 1;
 // or
 // $count = $count + 1;
 // or
 // $count++;

 }
?>

hello PHP. hello PHP. hello PHP.

Arrays	
 (ie,	
 lists)	

$myvar = array(); # create new array

$myvar = array(val0, val1, ..., valN);

$myvar[index]; # element at position index

$myvar[index] = val0; # assign element at index

$myvar[] = valN; # append valN

	

$a1 = array(); # empty, length-0 array

$a[2] = 12; # store 12 in 3rd position of array

$a2 = array("a", "sequence", "of", "strings");
$a2[] = "the end"; # new last element of $a2

foreach	
 	
 loop	

foreach ($array as $element) {

 ...
}

Similar to Pythonʼ’s: 	
 for element in array:

Simpler than regular “for” loop when using arrays

$a = array("a", "sequence", "of", "strings");
for ($i = 0; i < count($a); $i++) {

 print "the next word is {$a[$i]}\n";
}
foreach ($a as $element) {

 print "the next word is $element\n";
}

Embedded	
 PHP	

We could use PHP print and/or echo statements to generate
HTML output, e.g.
<?php
 print "<html>\n<head>\n";
 print "<title>PHP Squares</title>\n";
 ...
 for ($i = 0; i <= 10; $i++) {
 print "<p>$i squared is $i*$i</p>\n";

 }
?>
What’s wrong with this approach?

Suppose you want to change the page HTML …

Embedding PHP in HTML
Write HTML literally.

When scripting is needed to compute a value, embed PHP
code.

General format of a PHP script written within HTML file:

HTML elements ... <!-- output as HTML -->
 <?php

 PHP code ... # output embedded within HTML
 ?>
HTML elements ...
 <?php

 PHP code ...
 ?>
HTML elements ...	

Embedding PHP in HTML
General format of a PHP script written within HTML file:
HTML elements ... <!-- output as HTML -->
 <?php
 PHP code ... # output embedded within HTML

 ?>
HTML elements ...

The PHP code in an embedded block may consist of
statements, declarations, or expression values.

Here’s a sample expression block:
 <?= $myvar ?>

which is equivalent to

 <?php print $myvar; ?>
	

Embedding PHP in HTML
Hereʼ’s our earlier “squares” calculator, with “poor style” print
statements:

	

<?php

 print "<html>\n<head>\n";

 print "<title>PHP Squares</title>\n";
 ...

 for ($i = 0; i <= 10; $i++) {

 print "<p>$i squared is $i*$i</p>\n";

 }

?>

Embedding PHP in HTML
Hereʼ’s our earlier “squares” calculator, now without print
statements:

	

<html><head>

 <title>PHP Squares</title>

 ...
 <?php

 for ($i = 0; $i <= 10; $i++) { ?>

 <p><?= $i ?> squared is <?= $i*$i ?>
 </p>

 <?php } ?>

 ...
</html>

Functions
Functions must be defined before they can be called.

Function headers are of the format:
	

Note that no return type is specified.

function quadratic($a, $b, $c) {
 return -$b + sqrt($b*$b - 4*$a*$c) / (2*$a);
}
$x = -2; $y = 3; $root = quadratic(1, $x, $y-2);

Unlike variables, function names are not case sensitive	
 	

foo(…) == Foo(…) == FoO(…)

function functionName($arg_1, $arg_2, …, $arg_n)

Query Strings and Parameters
•  We refer to Web pages using URL’s (Uniform Resource Locators),

of the form http://domain_name/path_value

•  We can specify parameters to PHP scripts by appending a value
to the end of the URL:

http://www.google.com/search?q=android
https://mathlab…./cscb20w17/utorid/fresh.php?film=sing

•  Parameter name=value pairs follow the “?” at the end of the URL
path_value, in 2nd example param name is film, value is sing

•  Provides a mechanism by which a user can control/customize
the behavior of a server-side PHP script

Query Strings and Parameters
•  PHP can retrieve parameter values using the $_REQUEST array:

$_REQUEST["parameter_name"]

•  Returns the parameter’s value as a string

•  Can check to see if a specific parameter is set using isset():

$country_name = $_REQUEST["country"];
$population = (int) $_REQUEST["population"];
if (isset($_REQUEST["code"])) {

 $code = (int) $_REQUEST["code"];
} else {
 $code = -1;

}

Reading	
 Files	

Two ways to read the contents of a text file:
1. file(“my_file.txt”);
 returns array of lines in my_file.txt
2. file_get_contents(“my_file.txt”);
 returns a single string containing all lines in my_file.txt

<?php
display lines from file as a bulleted list
$cities = file("cities.txt");
foreach ($cities as $city) {
?>
 <?= $city ?>
<?php
}
?>

Unpacking Arrays, Splitting Strings
Sometimes it is useful to be able to refer to the
elements of an array by individual variable names,
rather than using indices
 $movie_info = array(“Sing”, “2016");
 list($title,$year) = $movie_info;

 print “$title opened in $year.”;

 # now can use $title rather than $movie_info[0]

A string consisting of delimited values can be split
(same idea as in Python)

$title = "Databases and Web Programming";

$words = explode(" ", $title);

Reading	
 Directories	

•  If your application needs to read from a set of files in a

directory, how can your code automatically detect and
read the specific files present?

•  glob enables you to use pattern matching to select files

 $notes = glob("note_*.txt");

 foreach ($notes as $note) {

 print $note;

 }

•  * is just one of several “regular expression” pattern-
matching forms (others include matching on character
ranges, matching digits, optional characters)

