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Abstract.-The spatial distribution 
of marine organisms is highly patchy. 
Because of this patchy distribution, 
data from marine abundance surveys 
are highly skewed and have a large 
variance. Compounding the problem of 
estimating the mean abundance from 
such data, is that occasionally a rela­
tively huge catch will occur. These large 
catches are not "outliers" but do domi­
nate the estimates of the mean and 
variance. A lognormal model of the non­
zero survey values (a ~-distribution) is 
used to model survey data. The estima­
tors, based on the lognormal model, ap­
pear to be much more efficient for ma­
rine data than the usual sample esti­
mators. In particular, the lognormal­
based estimators provide reasonable es­
timates for data sets that contain a very 
large catch. The properties and effi­
ciency of the ~-distribution estimators 
are examined and the techniques are 
applied to various marine data sets. 
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Characteristically, the observed dis­
tribution of abundance data gener­
ated by marine surveys has a large 
variance, is highly skewed to the 
right, and contains a substantial 
proportion of zeros. Because of this 
large variability, the sample mean 
has a low level of precision even for 
relatively intensive surveys (Gross­
lein, 1971; God0, 1994; Pennington 
and God0, 1995). A common prob­
lem in the analyses and interpreta­
tion of skewed survey data, is that 
a single immense catch may account 
for 50% or more of the total catch 
during a survey (Sissenwine, 1978; 
Dew, 1990; McConnaughey and 
Conquest, 1992; Bowering and 
Brodie, 1994). These extreme val­
ues not only greatly affect the esti­
mate of the mean but also of the 
variance (Otto, 1986). As McCon­
naughey and Conquest (1992) ob­
served, although these large values 
cause much uncertainty for man­
agement, they reflect the spatial 
distribution of the species and are 
not outliers that should be dis­
carded. In practice, the use of more 
efficient sampling schemes or esti­
mators is the only realistic way to 
increase survey precision; the total 
number of samples that can be 
taken is limited by the high cost of 
sampling at sea (Gunderson, 1993). 

One possible way to increase the 
precision of survey estimates is to 
model the observed distribution of 
catches and exploit the model's 
properties to develop more efficient 
estimators of population param-

eters (see, e.g. Pennington, 1983; 
MacLennan and MacKenzie, 1988; 
Lo et al., 1992; McConnaughey and 
Conquest, 1992; Conquest et al., 
1996; Stefansson, in press). For ma­
rine data, the distribution of the 
nonzero values is often well approxi­
mated by a lognormal distribution 
(e.g. Pennington, 1983; Smith, 1988; 
McConnaughey and Conquest, 
1992; Conquest et al., 1996). Myers 
and Pepin (1990) found that of the 
69 marine data sets they examined, 
only 5 differed significantly from the 
lognormal distribution. Thus the 
lognormal model has been used as 
a basis for developing survey abun­
dance estimators (e.g. Pennington, 
1983, 1986; Lo et al., 1992; McCon­
naughey and Conquest, 1992) and 
for estimating commercial catch 
(Conquest et al., 1996). 

It is not surprising that marine 
abundance data often appear to fol­
low a lognormal distribution. The 
factors that determine abundance 
over a region seem to have a multi­
plicative effect. When this is the 
case, survey data will be approxi­
mately lognormally distributed by 
the central limit theorem (see, e.g. 
Aitchison and Brown, 1957). More 
generally, the lognormal model has 
been useful for analyzing a wide 
range of ecological data. As Dennis 
and Patil ( 1988) put it: "Ecological 
abundance data are intrinsically 
positive, with a few enormously 
high data points typically arising in 
every study. The lognormal distri­
bution is an ideal descriptor of such 
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data with a positive range, right skewness, heavy 
tail, and easily computed parameter estimates." 

To estimate efficiently the mean of skewed marine 
survey data and to be able to assess its precision, I 
examined an estimator based on a lognormal model 
of the distribution. I present the estimator's theo­
retical efficiency, assess its performance by applying 
it to several real marine data sets, and give methods 
for constructing confidence intervals. 

Statistical methods 

Suppose the nonzero catches generated by a survey 
are lognormally distributed, i.e. the logged values are 
normally distributed. If the distribution contains a 
proportion of zeros, then it is called a '1-distribution 
(Aitchison and Brown, 1957). If zeros do not occur, 
then it is the usual lognormal distribution. 

Estimating the mean and variance of the 
6-distribution 

As is the case for any distribution, the sample aver­
age, i, and variance, s!, are unbiased estimators of 
the mean and variance of the '1-distribution. Because 
of the properties of the lognormal distribution, the 
minimum variance unbiased estimators (denoted by 
c and d) of the mean and variance of the '1-distribu­
tion are given by (Aitchison and Brown, 1957) 

m exp(y)gm(s2/2), m>l 
n 

c= ~ m=l (1) 
n 

0, m=O 

and 

m exp(2y){gm(2s2)-(m - l)gm(m -2 s2)},m > 1 
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where n is the number of observations, m is the num­
ber of nonzero values, y = ln(x) , y, and s2 are the 
sample mean and variance of the logged nonzero 
values, x 1 denotes the single untransformed value 
when m equals one, andgm(t), which is a function of 
m and t (e.g. t = s2 I 2 in Equation 1), is defined by 

m-1 
gm(t) = 1+--t + 

m 

f . (m-1)2)-1 X~· 

1
=2 m1 (m + l)(m + 3) ... (m + 2)-3) j! 

Estimating the variance of x and c 

(3) 

Again for the '1-distribution, the sample mean, i, 
and care both unbiased estimators of the mean. Like­
wise, the sample variance, s;, and d are unbiased 
estimators of the population variance. If i is used 
to estimate the mean, then s!ln, the sample vari­
ance divided by the sample size, is an estimate of 
the variance of i. But s; can be a very inefficient 
estimator compared with d, and, therefore, it is fre­
quently recommended that din be used to estimate 
the variance of i (Aitchison and Brown, 1957). The 
minimum variance unbiased estimator of the vari­
ance of c is given by (Pennington, 1983) 

m=l 

0, m = 0 

(4) 

If m = n, i.e. there are no zeros, then Equations 1, 2, 
and 4 reduce to the usual estimators for the lognor­
mal distribution. 

Relative efficiency of x and c 

For the two estimators of the mean, i and c, the one 
with the smallest variance is the most efficient esti­
mator. The formulas in the last section give estimates 
of the variance based on the particular sample drawn 
from the distribution. The expected or true variance 
of x is (Aitchison and Brown, 1957) 

_ exp(2µ + 0'
2

) { 2 } var(x)=----"'--'--- p[exp(O' )-1]+ p(l-p), 
n 

(5) 

where µ is the mean and a is the standard deviation 
of the log-transformed nonzero values, and p is the 
proportion ofnonzeros. Smith (1988) derived the ex­
pected value of varest<c ), which, in the same notation 
as above, is given by 
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It can be shown using results from Bradu and 
Mundlak (1970) that the var(c) is always less than 
or equal to var( x ), both decrease as n increases but 
var(c) decreases more quickly than does var( x ): For 
values of a2- typical for marine data, var(c) is consid­
erably smaller than var( x) (Pennington, 1986; 
Smith, 1988). This can be seen in Figure 1 which 
contains plots of var(c) divided by var( x) versus 
sample size for a range of <i-'s appropriate for ma­
rine survey data. 

Tracking trends in abundance 

For a series of marine surveys, it is usually assumed 
that the mean catch per tow is proportional to popu­
lation size. If this is the case, then the estimator, c, 
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Figure 1 
The relative efficiency of the estimators c and i for esti­
mating the mean of the d-distribution. The plots show the 
var(c) divided by the var( x) as a function of sample size 
when the variance of the nonzero logged values, <fl-, equals 
2, 3, 4, and 5, and when the proportion of nonzero values, 
p, is 0.8. 
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. is an index of abundance. The mean of the lognor­
mal distribution is given by exp(µ + <i-/2). McCon­
naughey and Conquest (1992) have suggested that 
for lognormally distributed survey data, exp( y ), a 
slightly biased estimate of exp(µ), may be a more 
stable index for following trends in abundance than 
estimates of the mean. That is, if a2- is constant over 
time (which is equivalent to the coefficient of varia­
tion of the untransformed variable being constant) 
then exp(µ), the median of the lognormal distribu­
tion, will also be proportional to abundance. The vari­
ance of exp( y) can be considerably smaller than the 
variance of c. 

The mean of the ~-distribution is p[exp(µ + cr/2)]. 
If the mean is proportional to population size and a2-
is constant for a survey series, then p[exp(µ)) will 
also be an index of abundance. It can be shown with 
techniques similar to those in Pennington ( 1983) that 
the minimum variance unbiased estimator, k, of 
p[exp(µ)] is 

m - -s m > 1 
( 

2 J -;exp(y)gm 2(m -1) ' 

k= ~ 
n 

0, 

m = 1 

m=O 

(7) 

and the minimum variance unbiased estimator of the 
variance of k is given by 

m= 1 

0, m=O 

(8) 

As before, if m = n, then Equations 7 and 8 reduce to 
the lognormal case (Bradu and Mundlak, 1970). 

Confidence intervals 

If n is large, then c ± 2[var t (c)] 112 and k ± 2[var es est 
(k)] 112 are approximately 95% confidence intervals. 
For smaller n, a conservative approach for construct­
ing confidence intervals is to calculate separate in-
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tervals for p and for the mean (or median) of the log­
normally distributed nonzero values. For example, 
if (pL, Pu> is a 95% confidence interval for p and (L, 
U) is a 95% interval for the mean (or median) of the 
lognormal component (see, e.g. McConnaughey and 
Conquest, 1992), then (pLL, PuU) will have a confi­
dence level of at least 90% (=0.95 x 0.95). 

Examples 

There are two types of data sets that are typical for 
marine abundance surveys. The first type has a single 
large catch that can be many times larger than the 
next biggest catch. This huge catch may account for 
more than 50% of the total catch taken during the 
survey. The other category, and the more common 
type, is that the distribution of catches is highly 
skewed, as is the case for the first type, but there 
are no isolated large catches that dominate the total 
catch. These are the basic types of data sets that 
would be expected if samples are taken from a highly 
skewed lognormal distribution. 

Isolated large catches 

Occasionally, a very large value can occur when 
samples are drawn from a lognormal distribution. 
The first example (Table 1) is an artificial data set 

generated from a lognormal distribution withµ= 0 
and er = 4. The mean of the distribution is 7.4 and 
its variance is 2,926. Because of one large point in 
the sample, the estimates, x = 38.8 and s! = 63,320, 
are much larger than the true values. The estimated 
standard error of the sample mean based on the 
sample variance is 35.6 [= (63,320/50)112]. 

The sample estimates of the logged values are y = 
0.175 and s2 = 3.921. Hence the estimates of the mean 
and variance from the minimum variance unbiased 
estimators are [Equations 1 and 2, m = n = 50] 

and 

c = exp(0.175)g50 (1.961) = 7.6 

d = exp(0.350){g50 (7.842)- g50 ( :: x3.921)} 

= 1.42 X (922.83- 34.07) = 1261, 

which are much closer to the true values than are 
the ordinary sample estimates. The estimate of the 
standard error of the sample mean using d is 5.0 
[=0261/50)112] as compared with an estimate of 35.6 
based on the sample variance. The expected stan­
dard error of the sample mean (when n = 50) is 7.6 
[ =(2926/50)112]. 

The estimated variance of c is given by (Equa­
tion 4) 

Table 1 
An artificial data set generated from a lognormal distribution, catch per unit of effort (CPUE) data for red king crab from a 1991 
trawl survey in the Bering Sea, and CPUE data for petrale sole from a 1992 survey off the west coast of the United States. 

Artificial data 

0.03 0.03 0.04 0.09 0.14 0.18 0.20 0.22 0.25 0.25 
0.25 0.27 0.27 0.27 0.30 0.38 0.40 0.42 0.51 0.55 

0.61 0.74 0.80 0.82 0.84 0.86 1.02 1.41 1.91 2.08 

2.35 2.72 3.20 3.21 3.22 3.26 3.39 4.21 4.76 5.61 

7.47 8.06 8.25 8.80 8.85 9.10 12.92 16.94 23.61 1782.19 

Red king crab CPUE1 

65 66 69 71 72 73 76 78 78 79 
81 83 84 85 86 108 141 144 152 154 

154 157 160 161 165 183 204 234 263 265 
292 313 317 339 413 435 455 469 569 609 
625 746 758 813 909 1056 1145 1197 1339 1789 

1842 2520 4194 4286 5424 32538 

Petrale sole CPUE2 

4.89 6.31 7.66 11.12 11.31 12.23 13.16 13.61 20.96 23.64 
26.31 26.79 28.58 30.07 43.87 56.49 71.43 81.08 94.30 103.02 

112.71 116.48 153.96 169.52 179.83 199.80 205.71 310.82 398.51 4635.18 

1 The data set also includes 24 zeros. 
2 Ten zeros are not shown. 
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vares/c) = exp(0.350){g;0 (1.961)-g50 (3.841)} 

= 1.42{(6.39)2 
- 34.07} = 9. 7. 

Thus the estimated standard error of c is 3.1 ( = (9. 7)Il2) 

as compared with an expected value of 3.8 (from Equa­
tion 6,p = 1). For further examples of the performance 
of the estimators on lognormal data, see Aitchison and 
Brown (1957), Blackwood (1991), McConnaughey and 
Conquest (1992) and Conquest et al. (1996). 

The next three examples are survey data that are 
similar in appearance to the artificial data set in that 
each contains a single large isolated catch. The first 
data set is from a trawl survey in the southeastern 
Bering Sea in 1991. In Table 1 is shown the survey 
catch per unit of effort (CPUE) of male red king crab, 
Paralithodes camtschatica, of legal size. The largest 
CPUE is six times greater than the second largest 
value and accounts for nearly 50% of the total sur­
vey catch. In Table 2 the estimates of the mean and 
the standard errors are calculated as above. The pat­
tern of the estimates is similar to that for the artifi­
cial data. In particular, the estimate of the mean, c = 
545.0, is much smaller than the sample mean (864.8) 
and appears to be more precise. The reason that c is 
so much lower than xis that, based on the .1-lognor­
mal model of the data, a CPUE as large or larger 
than the biggest value (32,538) would have occurred 
for approximately 1 in 2,200 tows during the 1991 
crab survey, and c weighs the value accordingly. In 
contrast, the sample mean gives each CPUE value 
equal weight. 

In Table 1, CPUE data are given for petrale sole, 
Eopsetta jordani, from a 1992 trawl survey off the 
west coast of the United States. The largest catch is 
65% of the total catch and is 12 times larger than 
the next largest catch. Estimates of the mean and 
standard errors are given in Table 2. 
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The last example of this type of data set is from a 
trawl survey off the east coast of the United States. 
The data (Sissenwine, 1978) are the catch per tow in 
1973 of Atlantic mackerel, Scomber scombrus. The 
largest catch (5,182 kg) is more than 25 times greater 
than the next largest ( 194 kg) and is 92% of the total 
catch. This is the one example presented for which 
lognormality of the nonzero values was rejected 
(P=O .02). Though the estimate c = 2.0 kg/tow is con­
siderably smaller than the ~ample n:iean ( x =26.2 kg/ 
tow), it is much more consistent with previous and 
subsequent survey indices (e.g. 1.6 kg/tow in 1972 
and 2.5 kg/tow in 197 4) than is the sample mean (see 
Fig. 5 in Sissenwine, 1978). 

No dominating large catch 

The more usual type of survey data set is one that is 
highly skewed but does not contain a relatively large 
isolated value. A typical example of this sort of data is 
seen in Figure 2 which shows the catch per tow of juve­
nile Arcto-Norwegian cod, Gadus morhua, collected 
during a 1989 midwater trawl survey in the western 
Barents Sea (Helle, 1994). The estimate of the mean 
from c is 55.2 and from x is 49.7. Similarly, the esti­
mate d is greater than the sample variance (Table 2). 

Another example is from a 1989 zooplankton sur­
vey in the Barents Sea (Helle, 1994). Figure 3 is a 
plot of the biomass per tow of copepods sampled with 
a Juday plankton net. The frequency distribution is 
similar to that in Figure 2, and, again, the estimates 
c and d are larger than the ordinary sample esti­
mates (Table 2). 

The sample average and variance will be underes­
timates for most samples (i.e. be smaller than the 
true values). This is due to the sampling distribu­
tion of x and s;, which, for a highly skewed distri­
bution, will still be skewed to the right for small to 

Table 2 
Summary statistics for estimating the mean and standard errors for six data sets, where n is the sample size, m is the number of 
nonzeros, x is the sample mean, se

8 
is the sample standard error (SE), sed is the SE based on a lognormal model, y and s2 are the 

mean and variance of the nonzero logged values, c is the estimate of the mean based on a lognormal model, and [varest (c)] 112 is its 
estimated standard error. The expected or true values for the artificial data are in parentheses. 

Data set n m x se
5 sed y s2 C [varest (c)]ll2 

Artificial 50 50 38.8 35.6 5.0 0.175 3.921 7.6 3 .1 
(7.4) (7.6) (7.6) (0) (4) (7.4) (3.8) 

Red king crab 80 56 864.8 415.0 156.0 5.755 1.866 545.0 134.8 
Petrale sole 40 30 179.2 115.2 46.9 3.96 2.238 112.1 39.8 
Atlantic mackerel 216 67 26.2 24.0 1.4 -0.165 4 .269 2.0 0.8 
Juvenile cod 161 99 49.7 11.7 26.7 2.759 3.572 55.2 16.4 

Zooplankton 160 160 478.1 68.9 93.2 5.338 1.876 525.7 77.2 
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Figure 2 
Frequency plot of the number per tow of juvenile Arcto­
Norwegian cod from a 1989 midwater trawl survey in the 
Barents Sea (Helle, 1994). There were also 62 zeros (n=161) 
which are not included in the plot. 

moderate sample sizes. The median can be much 
smaller than the mean for a skewed distribution, and, 
therefore, the sample estimators are not only less 
efficient but will underestimate the true values of 
the parameters most of the time (Pennington, 1983; 
McConnaughey and Conquest, 1992; Conquest et al., 
1996). The sampling distribution of s; is much more 
skewed than is the sampling distribution of x, which 
is the reason that s; often greatly underestimates 
its expected value more often than does x (Pen­
nington, 1986). The sample estimators are unbiased, 
even though most of the time the estimates are low 
and are very high for the occasional sample that con­
tains a huge catch (McConnaughey and Conquest, 
1992). 

Discussion 

The estimators of abundance, based on the lognor­
mal model, perform as expected on real survey data 
if the underlying model for the nonzero values is a 
lognormal distribution. The estimates are more pre­
cise, and the occasional huge catch does not affect 
the estimates nearly as much as it does the sample 
average (see also McConnaughey and Conquest, 
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Figure 3 

2 ,700 3 ,600 

Biomass (µg/m3) per tow of copepods Calanus finmarchicus 
and Oithona similis. Data are from a 1989 plankton sur­
vey in the Barents Sea (Helle, 1994). There were no zero 
values (n=160). 

1992). The ~-estimators treat these large catches as 
part of the distribution, as a reflection of how fish 
are actually distributed spatially, eliminating the 
need to handle them as "outliers," that is, to discard 
the points arbitrarily in an analysis of the data. Since 
all models only approximate reality, an advantage 
in using lognormal-based estimators for marine data 
is that they appear to be fairly robust to deviations 
from the model (Blackwood, 1991; Pennington, 1991; 
Conquest et al., 1996). 

The ~-estimators can be much more efficient than 
the sample estimators but lose this advantage for 
small samples (see Smith, 1988; Fig. 1). Thus for 
stratified surveys in which the region is divided into 
many relatively small strata and only a few stations 
are selected in each stratum, little would be gained 
by using the ~-estimators (Smith, 1988). Only a slight 
gain in precision is usually achieved by increasing 
the number of strata beyond 6 (Cochran, 1977). Con­
sequently it appears that a better survey design 
would be one that has larger strata with at least 20-
30 stations in each stratum (Fig. 1). Not oniy would 
this design improve the efficiency of the ~-estima­
tors but it would then be possible to exploit optimal 
sample allocation schemes that may be more efficient 
(Gavaris and Smith, 1987; Polacheck and V~lstad, 



504 

1993). For current surveys with sampling intensity 
proportional to stratum area, it would likely be better 
to combine the small strata into ones with larger sample 
sizes for calculating abundance estimates. Another way 
to increase sample sizes for future surveys and to im­
prove survey efficiency in general would be to reduce 
tow duration and use the time saved to sample at more 
stations (Pennington and V0lstad, 1991, 1994). 

It has been suggested that since the lognormal 
model may be incorrect or not robust, the sample 
average and variance are the preferred estimators 
(Jolly and Hampton, 1990; Myers and Pepin, 1990; 
Smith, 1990). Using finite population techniques, 
Smith ( 1990) examined the performance of the esti­
mators based on the ~-distribution and concluded 
that for small populations the estimators are biased 
and not robust to deviations from the model. But the 
sort of model-based bias that Smith considered is not 
a concern for marine surveys. Because for most, if 
not all, marine surveys, the population size, i.e. the 
total number of tows that could be made, is effec­
tively infinite, whereas Smith's simulations were 
samples from populations of size 30. There is no rea­
son that the ~-estimators should be unbiased if ap­
plied to samples from small populations. For Smith's 
simulations, the usual properties of the lognormal­
based estimators are apparent if the small samples 
(n=3) are assumed to be from a larger population. 
That is, if the samples of size 3 are assumed to come 
from a survey for which the possible number of tows 
(the population size) is large, then the estimators are 
unbiased (see Table 1 in Smith, 1990). The model­
based bias that Smith observed is a function of popu­
lation size, not a property as such of the ~-estima­
tors or the size of the sample. 

What would cause concern is the possiblity that 
the underlying distribution may have appeared to 
be approximately lognormal but was not and that 
the departure from lognormality caused the lognor­
mal-based estimates and inferences to be mislead­
ing. Myers and Pepin (1990) have claimed, motivated 
by some simulations, that lognormal-based estima­
tors are very sensitive to undetectable deviations 
from lognormality. But to test a model fairly, the al­
ternative models should be realistic. The nonro­
bustness that they observed was simply due to the 
contamination oflognormal distributions with very 
small values, the opposite of what causes the impre­
cision of abundance estimates from marine surveys, 
i.e. the large catches (Pennington, 1991). It was not 
only that the contaminating values were small, but 
there was a relatively high probability that small 
values would occur. Since lnx goes to minus infinity as 
x approaches zero, these small values resulted in large 
negative values on the log scale, which caused the ex-
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treme instability of the lognormal-based estimators in 
Myers and Pepin's simulations. Aitchison ( 1986, p. 270) 
made the same point when discussing a sensitivity 
analysis of another log-based procedure. Analyzing ar­
tificial data is no different from analyzing real data; all 
aspects of the simulated data should be examined care­
fully (see, e.g. McConnaughey and Conquest, 1992) to 
ensure that the resulting conclusions are relevant. 

In practice, even if such small values were statis­
tically "undetectable" (Myers and Pepin, 1991), one 
would know (e.g. by looking at the data) whether val­
ues could be arbitrarily close to zero and, if so, deal 
with them appropriately as in Pennington (1991). The 
small values that may occur after transforming abun­
dance data for a particular length class with an age-­
length key (Myers and Pepin, 1991) will not cause 
any problems if the original catch at length data are 
distributed lognormally. This is because ln(ax) =Ina 
+ In x, and, therefore, the log-based estimate of the 
mean of ax is a multiplied by that for x. 

The reason most often given for using the sample 
estimates and not employing any modeling tech­
niques is that the sample average and variance are 
always unbiased estimators (Myers and Pepin, 1990; 
Smith, 1990). Lognormal-based estimators may be 
slightly biased for some applications but they are not 
overly influenced by the occasional huge catches and 
therefore can have a considerably smaller mean 
square error than the sample estimates for highly 
skewed distributions (Conquest et al., 1996). 

There are problems if the sample estimates are 
used for marine data (Lo et al., 1992). The estima­
tors are very sensitive to large catches and therefore 
may be rather inefficient. Another difficulty is that 
for the sample sizes common for marine surveys, the 
distribution of the sample average may be far from 
normal for these highly skewed distributions 
(Sissenwine, 1978; McConnaughey and Conquest, 
1992; Conquest et al., 1996). Thus the central limit 
theorem cannot be invoked to assess the uncertainty 
associated with the estimates or to make inferences. 
Likewise, the distribution of the ~-estimator may not 
approximate a normal distribution for small samples, 
but for skewed distributions it appears to converge 
to normality more quickly than does the sample mean 
(Conquest et al., 1996). For small to moderate sample 
sizes, methods based on the lognormal model can be 
used to make confidence statements. 
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