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From Lecture 1

- PID-control
- State-space model of plant



State Space Models



State Space Models

Consider a linear differential equation of order n

dl’l dn Wy dnu dﬂ—1u
i +a1dt” == +any—b0d +b1dtn_1 + ...+ bpu

For linear systems the superposition principle holds:

Uu=u =—y=y,and
U=u; =y=y,implies
U=CG -+ -l =—=Y=CG -1+ -2

and vice versa; We can consider the output from a sum of signals by
considering the influence from each component.
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considering the influence from each component.

Q: Why is this not true for nonlinear systems? Example?
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State Space Models

Consider a linear differential equation of order n

d"y d"ly d"u d"""u
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An alternative to ONE differential quation of order n™ is to write it as
a system of n coupled differential equations, each or order one.

General State space representation:

x1 = fi(x1, X2, ...Xn, U)
)'(z = fz(Xw, X2, oo Xn, U)
Xn = (X1, X2, ... Xn, U)

y  =8(%, X2, ...Xn, U)

The last row is a static equation relating the introduced states (x)
with the input u, and the outputy.
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State Space Models

Consider a linear differential equation of order n

d"y d"ly d"u d"""u
don g e Ay = o b

+ ...+ bnu

An alternative to ONE differential quation of order n™ is to write it as
a system of n coupled differential equations, each or order one.

Linear state space representation:

) X1 an  ap an [* b
X1 = anXi + ... + amXn + b1U X2 _ |an A aon X2 + b, i
X2 = anXq + ... + anXn + bpu

Xn an1 an2 dnnd LXn bn
o M
Xn = amX1 + ... + annXn + bpu X

y=[a .. ¢ +du
y =X+ X+ ...+ Chxp +du
LXn

NOTE: Only states (x) and inputs (u) are allowed on the right hand side in
Eq.-system above (in fand g) for it to be called a state-space representation!



State Space Models

———»| Process b—»

Linear dynamics can be described in the following form

X = Ax + Bu
y = Cx(+Du)

Here x € R" is a vector with states. States can have a physical
"interpretation”, but not necessary.

In this course u € R and y € R will be scalars.

(For MIMO systems, see Multivariable Control (FRTN10))



Example

Example

The position of a mass m controlled by a force u is described by

mx = u

where x is the position of the mass.

u
m />
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Introduce the states x; = x and x, = x and write the system on state
space form. Let the position be the output.



Dynamical Systems

Continous Time Discrete Time
(sampled)
Linear This course Real-Time Systems / Signal proc.
(FRTNO1)
Nonlinear | Nonlinear Control and
Servo Systems (FRTNO5)




Linearization




Linearization - Why?

Many systems are nonlinear. However, one can approximate them
with linear ones. This to get a system that is easier to analyze.

A few examples of nonlinear systems:

- Water tanks (Labs 1,2)
- Air resistance
- Action potentials in neurons

- Pendulum under the influence of gravity
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Given a nonlinear system x = f(x, u), y = g(x, u)
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Linearization - How?

Given a nonlinear system x = f(x, u), y = g(x, u)
1. Determine a stationary point (Xo, Ug) to linearize around
)-(0 =0 < f(Xo, Uo) =0

2. Make a first order Taylor series expansions of f and g around

(X0, Uo):
fxu~fxu+ﬁfxuxx 2fxuuu
(x, u) ~ f(xo, Uo) ax(o’ 0)(X — °)+8u(°’ 0)(U — uo)

0 0
g(x, u) ~ g(xo, Uo) + &g(xo, Uo)(X — Xo) + %g(xo, Uo)(u — Uo)

Notice that f(xg, ug) = 0 and let yo = g(Xo, Up)
3. Introduce Ax =X — Xg, AU =U — Ug and Ay =y —yq
4. The state-space equations in the new variables are given by:

AX =X — Xo = f(x, u) = %f(xo, Ug)AX + %f(xo, Ug)Au = AAX + BAU
13

0
Ay = g(x,u) —yg ~ &g(xo, Ug)AX + 0 g(Xo, Up)Au = CAX + DAuU



Example - Linearization

Example
The dynamics of a specific system is described by

).(1:X2

: X5

xzzfx—§+x1+\/u+1
1

y=xj +u

a) Find all stationary points

b) Linearize the system around the stationary point corresponding
to ug =3

14



The dynamics of a specific system is described by

5(1 = X2 :f1(X17 X2, U)

. x4

Xzz—x% + X1+ VU +1 = (%1, Xz, U)
1

y =X + u? = g(x1, X2, U)

(a) Find stationary point for ug =3: (X, = %, = 0)

0=x
XZ'
o:—x—§+x1+\/3+1
1
y=x:+3°

= (X140, X20, Uo) = (=2, 0, 3)
Yo = g(X10, %20, Ug) = 13



The dynamics of a specific system is described by

).(1 =X = f-|(X17 X2, U)
. x4
xzzfx—%+x1+\/u+1 = f,(Xq, X2, U)
1
y =%} + u? = g(x1, X2, U)
- (X'|07 X20, UO) = (727 Oa 3)
Yo = §(X10, %20, Up) = 13
(b) Linearize around stationary point (-2, 0, 3)
ofy ofy ofy
=0 ALR =0
0% ’ 0%, ’ ou ’
O _ 4., 8 O 1
0% X3 X X ou  2/u+1
og og og
22 =) =2 =0 ==
X4 X1 19)) ’ ou 4



The dynamics of a specific system is described by

).(1 = X2 :f1(X17 X2, U)

: X3

Xz:_x% —|—X1+\/m :fQ(X17X2a U)
1

y =2 + U2 = g(x1, X2, U)

= (X10, X20,Uo) = (=2, 0, 3)
Yo = g(X10, %20, Ug) = 13

(b) Linearize around stationary point (=2, 0, 3)

on _0 on 1 of _
X1 {0, 00} O |{x0, w0} OU |{xo, uo}

of _ of _0 of _1!
Oxq [{x0, uo} 7 0% [{xo0, o} 7 AU | {x6, uo} 4’
og ¥ og o og

Mo,y % 0, w0} AU | {xo, w0}



The dynamics of a specific system is described by

)'(1 =X = f'l(x17 X2, U)
4
i X
Xzzix% + X +VUu+1 = f2(x1, %, U)
1
2 2 =
y7X1+U *g(xtha U)

= (X10, X20,Uo) = (=2, 0, 3)
Yo = g(X10, %20, Ug) = 13

(b) Linearize around stationary point (=2, 0, 3)

f(x, u) B |01 f(x, u) _B
OX  |{xo, U} N I ) OU  |{xo, up} N
g(x, u) g(x, u)
OX {Xo, Uo} [ } ou [{Xo, Uo}

o

ENEN

—
(@]
[E)



The dynamics of a specific system is described by

)'(1 =X = f‘|(X1, X2, U)
. X3
fo= 2 4+ VI = fax 2, U)
1
212 =
y=x+u = g(x1, X2, U)

= (X40, X20, Uo) = (=2, 0, 3)
Yo = 8(X10, X20, Ug) = 13
Introduce
AXy = Xq — Xq0, AXy = Xz — X0

Au=u—Ug Ay =y —Yo

The state-space equations in the new variables are given by:

Ax 0 1] |Ax 0

A | = + (a0

th 17 0 AXy 4
AXq

Ay = [—4 o} ae| [6] u




Transfer Function




Laplace Transformation

Let f(t) be a function of time t, the Laplace transformation L(f(t))(s)
is defined as

LF(D)(s) = F(s) = / ~ oSttt
Example:
c (dg(tt)) (s) = sF(s) — f(0)

Initial values helps to calculate what happens in transient phase!

Assuming that f(0) = f'(0) = - -- = f"='(0) = 0 (common assumption
during this course, but not always!) it has the property that

L (d:;[(mt)> (s) =s"F(s)

c ( /O t f(r)ii) (5)= 1K(s)  (integrator)

See Collection of Formulae for a table of Laplace transformations. 17



Example - Transfer Function

Example
A system’s dynamics is described by the differential equation

Y+ a1y + ay = byl + byu.
After Laplace transformation we get
(s +ais + a2)Y(s) = (b1s + by)U(s)

which can be written as
G(s)

- bis + b,
24 a5+ a

Y(s) U(s) = G(s)U(s)

G(s) is called the transfer function of the system.



Transfer Function

Relation between control signal U(s) and output Y(s):

Zeros of Q(s) are called zeros of the system, zeros of P(s) are called
poles of the system.

The poles play a very important role for the system'’s behavior.

19



From State Space to Transfer Function

For a system on state space form

X = Ax + Bu
y =Cx+Du

the transfer function is given by
G(s) =C(sl =A)"'B+D

Observe: the denominator of G(s) is given by P(s) = det(sl — A), so
eigenvalues of A are poles of the system.

20



From Transfer Function to State Space

Can be done in several ways, see Collection of Formulae.

Example
A system’s transfer function is

2s +1

G(s)= —>—
(s) 3445 -8

Write the system on a state space form of your choice.

21



Three Ways to Describe a Dynamical System

Differential equation
Y+ a1y + azy = byl + byu

£ (58) () = "F(s)

Collection of Formulae

State space /\ Transfer function

X = Ax + Bu Y(s) = G(s)U(s) = 2 U(s)

y:CX+DU\_/

G(s) =C(sl —A)"'B+D

22



Block Diagram Representation




Block Diagram - Transfer Function

When the blocks in a block diagram are replaced by transfer
functions, it is possible to describe the relations between signals in
an easy way.

— & |—

24



Block Diagram - Components

Most block diagrams consist of three components:

- Blocks - Transfer functions
- Arrows - Signals
- Summations

where R, E, U, Y are the Laplace transformations of the reference r(t),
control error e(t), control signal u(t), and output y(t), respectively.

25



Determine Transfer Function From Block Diagram

Y=GpU, U=GgE, E=R-—Y
From the equations above the transfer function between r and y is

_ GpGr
1+ GpGr

26



Example - Transfer Functions

Example
Two systems, G; and Gy, are interconnected as in the figure below
» G
u y
Gy

Compute the transfer function from u to y, Gy,.

27



This lecture

1. State Space Models
2. Linearization
3. Transfer Function

4. Block Diagram Representation

Next lecture

- Impulse Response Analysis

- Step Response Analysis

28
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