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Abstract

Informally, the ‘linear representation hypothesis’ is the idea that high-level concepts
are represented linearly as directions in some representation space. In this paper, we
address two closely related questions: What does “linear representation” actually mean?
And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in
the representation space? To answer these, we use the language of counterfactuals to give
two formalizations of “linear representation”, one in the output (word) representation
space, and one in the input (sentence) space. We then prove these connect to linear
probing and model steering, respectively. To make sense of geometric notions, we use
the formalization to identify a particular (non-Euclidean) inner product that respects
language structure in a sense we make precise. Using this causal inner product, we
show how to unify all notions of linear representation. In particular, this allows the
construction of probes and steering vectors using counterfactual pairs. Experiments with
LLaMA-2 demonstrate the existence of linear representations of concepts, the connection
to interpretation and control, and the fundamental role of the choice of inner product.
Code is available at github.com/KihoPark/linear rep geometry.

1 Introduction

In the context of language models, the “Linear Representation Hypothesis” is the idea that
high-level concepts are represented linearly in the representation space of a model [e.g.
MYZ13; Aro+16; Elh+22; Wan+23; NLW23]. In the context of language, a high-level
concept might include: is the text in French or English? Is it in the present tense or past
tense? If the text is about a person, are they male or female? The appeal of the linear
representation hypothesis is that—were it true—the tasks of interpreting and controlling
model behavior could exploit linear algebraic operations on the representation space. The
goal of this paper is to formalize the linear representation hypothesis, and clarify how it
relates to interpretation and control.

The first challenge is that it is not clear what “linear representation” actually means. There
are (at least) three natural ways to interpret the idea:

1. Subspace: [e.g., Mik+13; PSM14] The first idea is that each concept is represented
as a subspace. For example, in the context of word embeddings, it has been argued
empirically that Rep(“woman”) — Rep(“man”), Rep(“queen”) — Rep(“king”), and all
similar pairs belong to a common subspace [Mik+13]. Then, it is natural to take this
subspace to be a representation of the concept of Male/Female.

2. Measurement: [e.g., NLW23; GT23] Next is the idea that the probability of a concept
value can be measured with a linear probe. For example, the probability that the
output language is French is logit-linear in the representation of the input. In this case,
we can take the linear map to be a representation of the concept of English/French.
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Figure 1: The geometry of linear representations can be understood in terms of a causal inner product
that respects the semantic structure of concepts. We show that this inner product induces a unified linear
representation of concepts. Generally, each concept has a representation A in the embedding (input
phrase) space and 7 in the unembedding (output word) space. The left figure shows representations of
concepts W and Z induced by a non-causal inner product (e.g., Euclidean). The right figure shows the
representation induced by a causal inner product (a linear transformation of the representation space
such that the causal inner product becomes Euclidean). In this space, the embedding and unembedding
representations are unified, and causally separable concepts are represented by orthogonal vectors.

3. Intervention: [e.g., Wan+23; Tur+23] The final idea is that the value a concept takes
on can be changed (without changing other concepts) by adding a suitable steering
vector—e.g., we change the output to French by adding a English/French vector. In
this case, we take this added vector to be the representation of the concept.

It is not clear a priori how these ideas relate to each other, nor which is the “right” notion of
linear representation.

Next, suppose we have somehow found the linear representations of various concepts.
The appeal of linearity is that we can now hope to use linear algebraic operations on the
representation space for interpretation and control. For example, we might compute the
similarity between a representation and known concept directions, or edit representations
projected onto target directions. However, similarity and projection are geometric notions:
they require an inner product on the representation space. The second challenge is that it is
not clear what inner product is appropriate for understanding model representations.

To address these two challenges, we make the following contributions:

1. First, we formalize the subspace notion of linear representation in terms of counter-
factual pairs, in both “embedding” (input phrase) and “unembedding” (output word)
space. Using this, we prove that the unembedding notion connects to measurement,
and the embedding notion to intervention.

2. Next, we introduce the notion of a causal inner product: an inner product with the
property that concepts that can vary freely of each other are represented as orthogonal
vectors. We show that such an inner product has the special property that it unifies the
embedding and unembedding representations; illustrated in Figure 1. Additionally,
we show how to estimate the inner product using the LLM unembedding matrix.

3. Finally, we study the linear representation hypothesis empirically using LLaMA-2
[Tou+23]. Using the subspace notion, we are able to find linear representations of
a variety of concepts. Using these, we give evidence that the causal inner product
respects semantic structure, and that subspace representations can be used to construct
measurement and intervention representations.



Background on Language Models We will require some minimal background on (large)
language models. Formally, a language model takes in context text x and samples output
text. This sampling is done word by word (or token by token). Accordingly, we'll view the
outputs as single words. To define a probability distribution over outputs, the language
model first maps each context x to a vector A(x) in a representation space A ~ RY. We will
call these embedding vectors. The model also represents each word y as an unembedding
vector y(y) in a separate representation space I' ~ R?. The probability distribution over the
next words is then given by the softmax distribution:

P(y | x) o< exp(A(x) r(¥)). (1.1)

2 The Linear Representation Hypothesis

We begin by formalizing the subspace notion of linear representation, one in each of the
unembedding and embedding spaces of language models, and then tie the subspace notions
to the measurement and intervention notions.

2.1 Concepts

The first step is to formalize the notion of a concept. Intuitively, a concept is any factor of
variation that can be changed in isolation. For example, we can change the output from
French to English without changing its meaning, or change the output from being about a
man to about a woman without changing the language it is written in.

Following Wang et al. [Wan+23], we formalize this idea by taking a concept variable W to
be a latent variable that is caused by the context X, and that acts as a cause of the output Y.
For simplicity of exposition, we will restrict attention to binary concepts. Anticipating the
representation of concepts by vectors, we introduce an ordering on each binary concept—
e.g., male=>female. This ordering will make the sign of a representation meaningful (so,
e.g., the representation of female=>male will have the opposite sign.)

Each concept variable W defines a set of counterfactual outputs {Y(W = w)} that differ
only in the value of W. For example, for the male=female concept, we might have

(Y(W =0),Y(W =1)) & {(“man”, “woman”), (“king”, “queen”), ... } 2.1

In this paper, we’ll assume that the value of concepts can be read off deterministically from
the sampled output (so, e.g., the output “king” implies W = 0). Then, can specify concepts
by specifying their corresponding counterfactual outputs.

We will eventually need to reason about the relationships between multiple concepts. We
say that two concepts W and Z are causally separable if Y(W = w, Z = z) is well-defined for
each w,z. That is, causally separable concepts are those that can be varied freely and in iso-
lation. For example, English=>French and male=>female are causally separable—consider
{“king”, “queen”, “roi”, “reine”}. However, English=>French and English=>Russian are
not because they cannot vary freely. Also, PresentTense=>PastTense—verb tense—and
SingularNoun=>PluralNoun—noun plurality—are not because they do not apply to the
same type of outputs.

We'll write Y (W =w, Z = 2) as Y(w, z) when the concepts are clear from context.

2.2 Unembedding Representations and Measurement

We now turn to formalizing the idea of linear representation of a concept. The first observa-
tion is that there are two distinct representation spaces in play—the model representation



space A, and the unembedding representation space I'. A concept could be linearly repre-
sented in either space. We begin with the unembedding space. Defining the cone of vector
v as Cone(v) = {av:a> 0},

Definition 1 (Unembedding Representation). We say that ¥, is an unembedding represen-
tation of concept W if y(Y (1)) —y(Y(0)) € Cone(¥,,) almost surely.

This definition captures the idea of linear representation that relies on y(“king”)—y(“queen”)
is parallel to y(“man”) — y(“woman”) and so forth. We use a cone instead of subspace
because the sign of the difference is significant—i.e., the difference between “king” and
“queen” is in the opposite direction as the difference between “woman” and “man”. The
unembedding representation (if it exists) is unique up to positive scaling, consistent with
the linear subspace hypothesis that concepts are represented as directions. In other words,
the unembedding representation is the unique direction that the counterfactual pairs point
to in the unembedding space.

Connection to Measurement The first result is that the unembedding representation is
closely tied to the measurement notion of linear representation:

Theorem 2 (Measurement Representation). Let W be a concept, and let 7, be an unembed-
ding representation of W. Then, given any context embedding A € A,

logitP(Y =Y(1) | Y €{Y(1),Y(0)},A) = aA 7y, (2.2)

where a > 0 a.s. is a function of {Y (1), Y (0)}.
All proofs are given in Appendix A.

In words: if we know the output token is either “king” or “queen” (say, the context was
about a monarch), then the probability that the output is “king” is logit-linear in the
language model representation with regression coefficients ,,. The random scalar a is
a function of the particular counterfactual pair {Y(1),Y(0)}—e.g., it may be different for
{“king”, “queen”} and {“roi”, “riene”}. However, the direction used for prediction is the
same for all counterfactual pairs demonstrating the concept.

Theorem 2 shows a connection between the subspace representation and the linear repre-
sentation learned by fitting a linear probe to predict the concept. Namely, in both cases, we
get a predictor that is linear on the logit scale. However, the unembedding representation
differs from a probe-based representation in that it does not incorporate any information
about correlated but off-target concepts. For example, if French text were disproportionately
about men, a probe could learn this information (and include it in the representation), but
the unembedding representation would not. In this sense, the unembedding representation
might be viewed as an ideal probing representation.

2.3 Embedding Representations and Intervention

The next step is to define a linear subspace representation in the embedding space A.
We’ll again go with a notion anchored in demonstrative pairs. In the embedding space,
each A(x) defines a distribution over concepts. We consider pairs of sentences such as
Ay = A[“He is the monarch of England,”] and A; = A[“She is the monarch of England,”]
that induce different distributions on the target concept, but the same distribution on all
off-target concepts. A concept is embedding-represented if the difference in all such pairs
belongs to a common subspace. Formally,



Definition 3 (Embedding Representation). We say that Ay, is an embedding representation
of concept W if for any context embeddings Ay, A; € A that satisfy

POV =1[2) | . . POWZI%) _BOV|2)

_ , 2.3
FOW =1 &) FW,Z [ %) BOW | A) 23

for each concept Z that is causally separable with W, we have A; — A, € Cone(A,,).

The first condition ensures that the direction is relevant to the target concept, and the
second condition ensures that the direction is not relevant to off-target concepts.

Connection to Intervention It turns out that the embedding representation is closely tied
to the intervention notion of linear representation. To get there, we’ll need the following
lemma relating embedding representations to unembedding representations.

Lemma 4 (Unembedding-Embedding Relationship). Let A, be the embedding representation
of a concept W, and let 7, and 7, be the unembedding representations for W and any concept
Z that is causally separable with W. Then, we have

Ay¥w >0 and A7, =0. 2.4)

Conversely, if a representation Ay, satisfies (2.4) and there exist concepts {Zi}fl:_l1 such that
each concept is causally separable with W and {yy} U{y, idz_ll is the basis of R%, then A,y is
the embedding representation for the concept W.

We can now give the connection to the intervention notion of linear representation.

Theorem 5 (Intervention Representation). Let Ay, be the embedding representation of a
concept W. Then, for any concept Z that is causally separable with W,

P(Y=Y(W,1) | Y € {Y(W,0),Y(W, 1)}, A+ cAy) is constant in c €R, (2.5)

and
P(Y=Y(1,Z) | Y €{Y(0,2),Y(1,2)}, A+ cAy) is increasing in c € R. (2.6)

In words: adding A,, to the language model representation of the context changes the
probability of the target concept, but not the probability of off-target concepts.

3 Inner Product for Language Model Representations

Given linear representations, we would like to make use of them by doing things like measur-
ing the similarity between different representations, or editing concepts by projecting onto
a target direction. Similarity and projection are both notions that require an inner product.
We now consider the question of which inner product is appropriate for understanding
language model representations.

Preliminaries We define T to be the space of differences between elements of T'. Then, T'is
a d-dimensional real vector space.! We consider defining inner products on I'. Unembedding
representations are naturally directions (unique only up to scale). Once we have an inner
product, we define the canonical unembedding representation y,, to be the element of
the unembedding cone with (¥,7w) = 1. This lets us define inner products between
unembedding representations.

INote that the unembedding space T is only an affine space, since the softmax is invariant to adding a constant.



Unidentifiability of the inner product We might hope that there is some natural inner
product that is picked out (identified) by the model training. It turns out that this is not the
case. To understand the challenge, consider transforming the embedding and unembedding
spaces according to

g) = Ar()+B, 1(x) —ATA(x), (3.1

where A € R?? is some invertible linear transformation and 8 € R? is a constant. It’s easy
to see that this transformation preserves the softmax distribution P(y | x):

exp(A() r(¥))  _ _ exp(l(x)"g(¥))
S (A0 | 2y exp(()T ()

Vx,y. (3.2)

However, the objective function used to train the model depends on the representations
only through the softmax probabilities. Thus, the representation y is identified (at best)
only up to some invertible affine transformation.

This also means that the concept representations y,, are identified only up to some invertible
linear transformation A. The problem is that, given any fixed inner product,

()_/W’ ?Z) # (A’?W’A?Z)’ (33)

in general. Accordingly, there is no obvious reason to expect that algebraic manipulations
based on, e.g., the Euclidean inner product, should be preferred to manipulations using any
other inner product.

3.1 Causal Inner Products

We require some additional principles for choosing an inner product on the representation
space. The intuition we follow here is that causally separable concepts should be represented
as orthogonal vectors. For example, French=English and Male=>Female, should be
orthogonal. We define an inner product with this property:

Definition 6 (Causal Inner Product). A causal inner product (-,-)c on I' ~ R? is an inner
product such that

(?Wa ?Z)C = O) (34)

for any pair of causally separable concepts W and Z.

This choice turns out to have the critical property that it gives a natural unification of the
unembedding and embedding representations:

Theorem 7 (Unification of Representations). Suppose that, for any concept W, there exist
concepts {Zi}fz_ll such that each concept is causally separable with W and {7y} U {7, };1:—11 isa
basis of RY. If (-, ) is a causal inner product, then the Riesz isomorphism 7 — (7, -)c maps
the unembedding representation yy, of each concept W to its embedding representation Ay, :

(Fws>)e= iJV- (3.5)

To understand this result intuitively, notice we can represent embeddings as row vectors
and unembeddings as column vectors. If the causal inner product was the Euclidean inner
product, the isomorphism would simply be the transpose operation. The theorem is the
(Riesz isomorphism) generalization of this idea: Each linear map on I' corresponds to some
A € A according to AT : ¥ — AT¥. So, we can map I to A by mapping each 7, to a linear
function according to ¥y — (¥, )c. The theorem says this map sends each unembedding
representation of a concept to the embedding representation of the same concept.



In the experiments, we will make use of this result to construct embedding representations
from unembedding representations. In particular, this allows us to find interventional
representations of concepts. This is important because it is difficult in practice to find pairs
of prompts that directly satisfy Definition 3.

3.2 An Explicit Form for Causal Inner Product

The next problem is: if a causal inner product exists, how can we find it? In principle, this
could be done by finding the unembedding representations of a large number of concepts,
and then finding an inner product that maps each pair of causally separable directions to
zero. In practice, this is infeasible because of the number of concepts required to find the
inner product, and the difficulty of estimating the representations of each concept.

We now turn to developing a more tractable approach. Our technique is based on the
following insight: knowing the value of concept W expressed by a randomly chosen word
tells us little about the value of that word on a causally separable concept Z. For example,
if we learn that a randomly sampled word is French (not English), this does not give us
significant information about whether it refers to a man or woman.? Following Theorem 5,
we formalize this idea as follows:

Assumption 1. Suppose W, Z are causally separable concepts and that y is an unembedding

vector sampled uniformly from the vocabulary. Then, AVTV}f 1 J_L;y for any embedding
representations Ay, and A, for W and Z, respectively.

This assumption lets us connect causal separability with something we can actually measure:
the statistical dependency between words. The next result makes this precise.

Theorem 8 (Explicit Form of Causal Inner Product). Suppose a causal inner product, rep-
resented as (7,7 )c = 7' My’ for some symmetric positive definite matrix M, exists. If there
are mutually causally separable concepts {Wk}izl, such that their canonical representations
G =[¥w,, " >Yw,] form a basis for '~ RY, then under Assumption 1,

M =GG" and G'Cov(y)'G =D, (3.6)

for some diagonal matrix D with positive entries, where v is the unembedding vector of a word
sampled uniformly at random from the vocabulary.

Notice that causal orthogonality only imposes d(d — 1)/2 constraints on the inner product,
but there are d(d —1)/2+d degrees of freedom in defining a positive definite matrix (hence,
an inner product)—thus, we expect d degrees of freedom in choosing a causal inner product.
Theorem 8 gives a characterization of this class of inner products, in the form of (3.6). Here,
D is a free parameter with d degrees of freedom. Each D defines the inner product. We do
not have a principle for picking out a unique choice of D (and thus, a unique inner product).
In our experiments, we will work with the choice D = I;. Then, we have a simple closed
form for the corresponding inner product:

#,7)c =7 "Cov(y) ¥, V7.7 €l. (3.7)

Notice that although we don’t have a unique inner product, we can rule out most inner
products. E.g., the Euclidean inner product is not a causal inner product if M = I; does not
satisfy (3.6) for any D.

2Note that this assumption is about words sampled randomly from the vocabulary, not words sampled randomly
from natural language sources. In the latter, there may well be non-causal correlations between causally separable
concepts (e.g., if French text is disproportionately about men).



Canonical representation The choice of inner product also be viewed as defining a
canonical choice of representations g,! in (3.1). Namely, we define

g(y) =Cov(y)™?y(y) and I(x)= Cov(y)"?A(x), (3.8)

for some square root of the inverse covariance matrix. It is easy to see that this choice
makes the embedding and unembedding representations of concepts the same, gy, = lyy,
and that (7,7')c = g'&’. That is, g is a representation where the Euclidean inner product
is a causal inner product. So, we can view a choice of inner product as instead being a
choice of representation. This is illustrated in Figure 1. This is convenient for experiments,
because it allows the use of standard Euclidean tools on the transformed space.

4 Experiments

We now turn to empirically validating the existence of linear representations, the tech-
nique for finding the causal inner product, and the predicted relationships between the
subspace, measurement, and intervention notions of linear representation. Code available
at github.com/KihoPark/linear_rep_geometry.

We use the LLaMA-2 model with 7 billion parameters [ Tou+23] as our testbed. This is a
decoder-only Transformer LLM [Vas+17; Rad+18], trained using the forward LM objective
and a 32K token vocabulary.

4.1 Concepts are represented as directions in the unembedding space

We start with the hypothesis that concepts are represented as directions in the unembedding
representation space (Definition 1). This notion relies on counterfactual pairs of words
that vary only in the value of the concept of interest. We consider 22 concepts defined in
the Big Analogy Test Set (BATS 3.0) [GDM16], which provides such counterfactual pairs.>
We also consider 4 additional language concepts: English=>French, French=>German,
French=>Spanish, and German=>Spanish, where we use words and their translations as
counterfactual pairs. Additionally, we consider the concept frequent=>infrequent capturing
how common a word is—we use pairs of common/uncommon synonyms (e.g., “bad” and
“terrible”) as counterfactual pairs. In Appendix B, we list all 27 concepts we consider and
example pairs.

If the subspace notion of the linear representation hypothesis holds then all counterfactual
token pairs should point to a common direction in the unembedding space. In practice, this
will only hold approximately for real pairs because each word can have multiple meanings
(e.g., “Queen” is a female monarch, a chess piece, and a rock band). However, if the linear
representation hypothesis holds, we still expect that y(“King”)—y(“Queen”) will significantly
align with a male=>female direction. So, for each concept W, we look at how the direction
defined by each counterfactual pair y(y;(1)) — y(y;(0)) is geometrically aligned with a
common direction ¥, (the unembedding representation). We estimate 7}, as the mean*
among all counterfactual pairs:

_ T N B .
Tw'i= ———=, with 7y, =— > y(¥:(1))—7y(y;(0)), (4.1
" V{TwsTwc " My ;

where (-, ) denotes the causal inner product defined in (3.7).

Figure 2 presents histograms of each y(y;(1)) —y(y;(0))) projected onto ¥, with respect to
the causal inner product. Because 7y, is computed using y(y;(1)) —v(y;(0)), we compute

3We throw away any pair where one of the words is encoded as multiple tokens.
“#Previous work on word embeddings [DGM16; FDD20] motivate taking the mean to improve the consistency
of the concept direction.
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Figure 2: Projecting counterfactual pairs onto their corresponding concept direction shows a clear
strong right skew, as we expect if the linear representation hypothesis holds. The projections of the
counterfactual pairs, (7w, Y(¥i(1)) —v(¥:(0)))c, are shown in red. For reference, we also project
100K randomly sampled word differences y(Y;, ) — y(Y;,) onto the estimated concept direction, shown
in blue. Each concept W (the title of each plot) is explained in Table 2.
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Figure 3: The subspace representation yy, acts as a linear probe for W. The histograms show
Y%A(xjf.‘) vs. Y%A(xfs) (left) and ?}—A(x]f.r) vs. YEA(X;S) (right) for W = French=>Spanish and Z =
male=>female, where {x’} are random contexts from French Wikipedia, and {x;S} are random contexts
from Spanish Wikipedia. We also see that 7, does not act as a linear probe for W, as expected.

each projection using a leave-one-out (LOO) estimate yy, ;) of the concept direction that
excludes (y;(0), y;(1)). Across the four concepts shown (and 22 others shown in Appendix C),
the differences between counterfactual pairs are substantially more aligned with 7, than
those between random pairs. The sole exception is thing=>part, which does not appear to
have a linear representation.

The results are consistent with the linear representation hypothesis: the directions computed
by each counterfactual pair point (up to some noise) to a common direction representing a
linear subspace. Further, 7y, is a reasonable estimator for that direction.

4.2 Concept directions act as linear probes

Next, we check the connection to the measurement notion of linear representation. We
consider the concept French=>Spanish. To construct a dataset of French/Spanish contexts,
we sample contexts of random lengths from Wikipedia pages in each language. (Note:
these are not counterfactual pairs.) Following Theorem 2 we expect ?Ivl(xjf.r) < 0 and

)7;, A(x;?s) > 0. Figure 3 confirms this expectation, showing that y,, is a linear probe for the
concept W in A. We also see that the representation of an off-target concept Z does not
have any predictive power for this task.

4.3 Concept directions map to intervention representations

Theorem 5 says that we can construct an intervention representation by constructing
an embedding embedding representation. Doing this directly requires finding pairs of
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Figure 4: Adding al. to A changes the target concept C without changing off-target concepts. The
plots illustrate change in log(P(“queen” | x)/P(“king” | x)) and log(P(“King” | x)/P(“king” | x)), after
changing A(x;) to A¢ 4(x;) (@ € [0,0.4]) and C = male=>female (left), lower=upper (center),
French=Spanish (right). The two ends of the arrow are A(x;) and A¢ o 4(x;), respectively. Each
context x; is presented in Table 4.
(a) Context: “Long live the ” (b) Context: “In a monarchy, the ruler is usually a ”
Rank a =0 0.1 0.2 0.3 0.4 Rank a=0 0.1 0.2 0.3 0.4
1 king Queen queen queen queen 1 king king her = woman woman
2 King queen Queen Queen Queen 2 monarch monarch monarch queen queen
3 Queen king  _ lady lady 3 member her member her female
4 queen King lady woman woman 4 her member woman monarch her
5 _ king women women 5 person person queen member member

Table 1: Adding the intervention representation aly, changes the probability over completions in the
expected way. As the scale of intervention increases, the probability of seeing Y (W = 1) (“queen”)
increases while the probability of seeing Y (W = 0) (“king”) decreases. We show the top-5 most probable
words after the intervention (4.3) in the W = male=>female direction, i.e., Ay ,(x) = A(x) + aty,
for a € {0,0.1,0.2,0.3,0.4}. The original context x is a sentence fragment that ends with the word
Y(W = 0) (“king”™). The most likely words reflect the concept, with “queen” being (close to) top-1.

prompt that vary only on the distribution they induce on the target concept. In preliminary
experiments, we found it was difficult to construct such pairs in practice.

Here, we will instead use the isomorphism between embedding and unembedding rep-
resentations (Theorem 7) to construct intervention representations from unembedding
representations. We take .

Aw = Cov(y) . 4.2)

Theorem 5 predicts that adding A,, to a context representation should increase the probabil-
ity of W, while leaving the probability of all causally separable concepts unaltered.

To test this for a given pair of causally separable concepts W and Z, we first choose a
quadruple {Y (w,2)},, ;¢(0,1}> and then generate contexts {x;} such that the next word should
be Y(0,0). For example, if W = male=female and Z = lower=>upper, then we choose the

quadruple (“king”, “queen”, “King”, “Queen”), and generate contexts using ChatGPT-4 (e.g.,
“Long live the”). We then intervene on A(x;) using A via

Aca(x;) = Alx;) + aic, (4.3)

where @ > 0 and C can be W, Z, or some other causally separable concept (e.g., French=>Spanish).
For different choices of C, we plot the changes in logitP(W = 1| Z,A) and logitP(Z =

1| W, A7), as we increase a. We expect to see that, if we intervene in the W direction

(C = W), then the intervention should linearly increase logitP(W =1 | Z, 1), while the

other logit should stay constant; if we intervene in a direction C that is causally separable

with both W and Z, then we expect both logits to stay constant.

Figure 4 shows the results of one such experiment, confirming our expectations. We see, for
example, that intervening in the male=>female direction raises the logit for choosing “queen”
over “king” as the next word, but does not change the logit for “King” over “king”.
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M= Cov(y)~t

verb=3pSg (1)

verb = Ving (2)

verb= Ved (3)

Ving = 3pSg (4)

Ving = Ved (5)

3pSg = Ved (6)

verb =V + able (7)
verb=V+er (8)

verb =V + tion (9)

verb =V + ment (10)
adj=un+ adj (11)
adj=adj+ly (12)
small = big (13)

thing = color (14)

thing = part (15)
country = capital (16)
pronoun = possessive (17)
male = female (18)
lower = upper (19)
noun = plural (20)

adj = comparative (21)
adj = superlative (22)
frequent = infrequent (23)
English = French (24)
French = German (25)
French = Spanish (26)
German = Spanish (27)

0.8

r0.6

0.2

3 6 9 12 15 18 21 24 27

Figure 5: Causally separable concepts are approximately orthogonal under the estimated causal inner
product. The heatmaps show |(7y,7 )| for the estimated unembedding representations of each concept
pair (W, Z). The plot on the left shows the estimated inner product based on (3.7). We also consider
two reference inner products by varying the choice of the symmetric positive definite matrix M. The
upper-right plot represents Euclidean inner product (M = I;); the lower-right plot represents an

arbitrary inner product (M = A" A, where Aij= ’ai’j‘ and q; ; Wy (0,1)). The detail for the concepts
is given in Table 2. See main text for a discussion of the interpretation.

A natural follow-up question is to see if, e.g., the intervention in the male=>female direction
pushes the probability of “queen” being the next word to the largest among all tokens.
We expect to see that, as we increase the value of a, the target concept (female) should
eventually be reflected in the most likely output words according to the LM. In Table 1, we
show two illustrative examples in which W is the concept male=female and the context x
is a sentence fragment that can end with the word Y (W = 0) (“king”). In the first example
(x = “Long live the ”), as we increase the scale a on the intervention, we see that the target
word Y(W = 1) (“queen”) becomes the most likely next word, while the original word
Y (W = 0) drops below the top-5 list. This illustrates how the intervention can push the
probability of the target word high enough to make it the most likely word while decreasing
the probability of the original word. The second example (x = “In a monarchy, the ruler
usually is a ”) further shows that, even when the target word does not become the most
likely one, the most likely words reflect the concept direction (“woman”, “queen”, “her”,
“female”).

4.4 The estimated inner product respects causal separability

Finally, we turn to directly examining whether the estimated inner product chosen from
Theorem 8,

7,7 )c =7 "Cov(y) ¥, V7.7 €T, (4.4)

is indeed approximately a causal inner product. In Figure 5, we plot a heatmap of the inner
products between all pairs of the 27 estimated concepts. If the estimated inner product is a
causal inner product, then we expect values near O between causally separable concepts
(and large values between causally related concepts).

The first observation is that most pairs of concepts are nearly orthogonal with respect
to this inner product. Interestingly, there is also a clear block diagonal structure. This
arises because the concepts are grouped by semantic similarity. For example, the first 10
concepts relate to verbs, and the last 4 concepts are language pairs. The additional non-zero
structure also generally makes sense. For example, lower=>upper (capitalization, concept
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19) has non-trivial inner product with the language pairs other than French=>Spanish. This
may be because French and Spanish obey similar capitalization rules, while English and
German each have different conventions (e.g., German capitalizes all nouns, but English
only capitalizes proper nouns).

In Figure 5, we also plot the similarities induced by the Euclidean inner product (M = I;)
and an arbitrarily chosen inner product (M = ATA, where A= |ai’j| and q; ; XN (0,1)).
We see that the arbitrary inner product does not respect the semantic structure at all. Surpris-
ingly, the Euclidean inner product somewhat does! This may due to some initialization or
implicit regularizing effect that favors learning unembeddings with approximately isotropic
covariance. Nevertheless, the estimated causal inner product clearly improves on the Eu-
clidean inner product. For example, frequent=>infrequent (concept 23) has high Euclidean
inner product with many separable concepts, and these are much smaller for the causal
inner product. Conversely, English=>French (24) has low Euclidean inner product with
the other language concepts (25-27), but high causal inner product with French=>German
and French=>Spanish (while being nearly orthogonal to German=>Spanish, which does
not share French.).

5 Discussion and Related Work

The idea that high-level concepts are encoded linearly is appealing because—if it is true—it
may open up simple methods for interpretability and controllability of LLMs. In this paper,
we have formalized ‘linear representation’, and shown that all natural variants of this notion
can be unified. This equivalence already suggests some approaches for interpretation and
control—e.g., we show how to use collections of pairs of words to define concept directions
(Section 4.1), and then use these directions to predict what the model’s output will be
(Section 4.2), and to change the output in a controlled fashion (Section 4.3). A major theme
is the role played by the choice of inner product.

Linear subspaces in language representations The linear subspace hypotheses was orig-
inally observed empirically in the context of word embeddings [e.g., Mik+13; LG14; GL14;
Vyl+16; GDM16; CCCP20; FDD20]. Similar structure has been observed in cross-lingual
word embeddings [MLS13; Lam+18; RVS19; Pen+22], sentence embeddings [Bow+16;
ZM20; Li+20; Ush+21], representation spaces of Transformer LLMs [Men+22; MEP23;
Her+23], and vision-language models [Wan+23; Tra+23; Per+23]. These observations
motivate Definition 1. The key idea in the present paper is providing formalization in
terms of counterfactual pairs—this is what allows us to connect to other notions of linear
representation, and to identify the inner product structure.

Measurement, intervention, and mechanistic interpretability There is a significant
body of work on linear representations for interpreting (probing) [e.g., AB17; Kim+18;
nos20; RKR21; Bel22; Li+22; Gev+22; NLW23] and controlling (steering) [e.g., Wan+23;
Tur+23; MEP23; Tra+23] models. This is particularly prominent in mechanistic interpretabil-
ity [Elh+21; Men+22; Her+23; Tur+23; Zou+23; Tod+23; HGG23]. With respect to this
body of work, the main contribution of the present paper is to clarify the linear represen-
tation hypothesis, and the critical role of the inner product. However, we do not address
interpretability of either model parameters, nor the activations of intermediate layers. These
are main focuses of existing work. It is an exciting direction for future work to understand
how ideas here—particularly, the causal inner product—translate to these settings.

Geometry of representations There is a line of work that studies the geometry of word
and sentence representations [e.g., Aro+16; MT17; Eth19; Rei+19; Li+20; HM19; Che+21;
CTB22; JAV23]. This work considers, e.g., visualizing and modeling how the learned
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embeddings are distributed, or how hierarchical structure is encoded. Our work is largely
orthogonal to these, since we are attempting to define a suitable inner product (and thus,
notion of distance) that respects the semantic structure of language.

Causal representation learning Finally, the ideas here connect to causal representation
learning [e.g., Hig+16; HM16; Hig+18; Khe+20; Zim+21; Sch+21; Mor+21; Wan+23].
Most obviously, our causal formalization of concepts is inspired by Wang et al. [Wan+23],
who establish a characterization of latent concepts and vector algebra in diffusion models.
Separately, a major theme in this literature is the identifiability of learned representations—
i.e., to what extent they capture underlying real-world structure. Our causal inner product
results may be viewed in this theme, showing that an inner product respecting semantic
closeness is not identified by the usual training procedure, but that it can be picked out with
a suitable assumption.
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A Proofs

A.1 Proof of Theorem 2

Theorem 2 (Measurement Representation). Let W be a concept, and let 7, be an unembed-
ding representation of W. Then, given any context embedding A € A,

logitP(Y =Y(1) | Y €{Y(1),Y(0)},A) = aA 7y, (2.2)

where a > 0 a.s. is a function of {Y (1), Y (0)}.

Proof. The proof involves writing out the softmax sampling distribution and invoking
Definition 1.

logitP(Y =Y(1) | Y € {Y(1),Y(0)}, 1) (A.1)

_ 1og PO =Y ¥ € V(D) Y(0)), ) A2)
P(Y =Y(0)| Y €{Y(1),Y(0)}, 1)

=T {y(v (1) —r(¥ (0))} (A.3)

=a A7y (A.4)

In (A.3), we simply write out the softmax distribution, allowing us to cancel out the
normalizing constants for the two probabilities. Equation (A.4) follows directly from
Definition 1; note that the randomness of a comes from the randomness of (Y(1),Y(0)). O

A.2 Proof of Lemma 4

Lemma 4 (Unembedding-Embedding Relationship). Let A,, be the embedding representation
of a concept W, and let ¥y, and 7, be the unembedding representations for W and any concept
Z that is causally separable with W. Then, we have

Ap¥w >0 and A7z =0. 2.4

Conversely, if a representation Ay, satisfies (2.4) and there exist concepts {Zi}f;ll such that
each concept is causally separable with W and {,} U {)_’Zi}?:_f is the basis of RY, then A,y is
the embedding representation for the concept W.

Proof. Let Ay, A, be a pair of embeddings such that

P(W=1|A P(W,Z | A P(W|A
]P’EW=—1:)L(1); >1 and o : 13 = 5 : AS (-5
for any concept Z that is causally separable with W. Then, by Definition 3,
M—Ap € Cone(iw). (A.6)
The condition (A.5) is equivalent to
LUETE IO CELIT S I ar

These two conditions are also equivalent to the following pair of conditions, respectively:

P(Y=Y(1)|Y e{y(1),Y(0)},1,)
Py =Y(1) | Y €{y(1),Y(0)},20)

(A.8)

and
P(Y=Y(W,1)|Y € {Y(W,0),Y(W, D}, A) _

P(Y =Y(W,1) | Y €{Y(W,0),Y(W,1)},Ay)

(A.9)
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The reason is that, conditional on Y € {Y(0,0),Y(0,1),Y(1,0),Y(1,1)}, conditioning on W
is equivalent to conditioning on Y € {Y(W,0),Y (W, 1)}. And, the event Z = 1 is equivalent

” :

to the event Y = Y(W, 1). (In words: if we know the output is one of “king”, “queen”, “roi”,
“reine” then conditioning on W = 1 is equivalent to conditioning on the output being “king”
or “roi”. Then, predicting whether the word is in English is equivalent to predicting whether
the word is “king”.)

By Theorem 2, the two conditions (A.8) and (A.9) are respectively equivalent to
a(Y(0),Y(1)(A; —29) 7w >0 and a(Y(W,0),Y(W,1))(A,—2) ¥, =0, (A.10)
where a’s are positive a.s. These are in turn respectively equivalent to
Ay, fw>0 and A} 7;=0. (A.11)

Conversely, if a representation A, satisfies (A.11) and there exist concepts {Z; ;1:—11 such

that each concept is causally separable with W and {y,, } U {7, ;1;11 is the basis of RY, then

Ay is unique up to positive scaling. If there exists A, and A, satisfying (A.5), then the
equivalence between (A.5) and (A.10) says that
(Al - Ao)T'}_/W >0 and (),1 - Ao)T')_/Z =0. (A12)

In other words, A; — A, also satisfies (A.11), implying that it must be the same as Aw Uup to
positive scaling. Therefore, for any A, and A; satisfying (A.5), A; — A, € Cone(Ay,). O

A.3 Proof of Theorem 5

Theorem 5 (Intervention Representation). Let Ay, be the embedding representation of a
concept W. Then, for any concept Z that is causally separable with W,

P(Y =Y(W,1) | Y € {Y(W,0),Y(W,1)},A+cAy) is constant in c € R, (2.5)

and
P(Y=Y(1,Z) | Y €{Y(0,2),Y(1,2Z)}, A+ cAy) is increasing in c € R. (2.6)

Proof. By Theorem 2,

logitP(Y = Y(W,1) | Y € {Y(W,0),Y(W, 1)}, A+ cAy) (A.13)
=a-(A+cdy) 7y, (A.14)
=a-ATf,+ac A7, (A.15)

Therefore, we have (2.5) since XJV)?Z =0 by Lemma 4.

Also, by Theorem 2,

logitP(Y =Y(1,2) | Y € {Y(0,2),Y(1,Z)}, A +cAy) (A.16)
=a-(A+cdy) Tw (A.17)
= a-}kT)"fZ+ac-)_L‘TV}7W (A.18)
Therefore, we have (2.6) since iJﬂ’w > 0 by Lemma 4. O
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A.4 Proof of Theorem 7

Theorem 7 (Unification of Representations). Suppose that, for any concept W, there exist
concepts {Z; l.dz_ll such that each concept is causally separable with W and {7y} U {7, }fz_ll isa
basis of R. If (-, ) is a causal inner product, then the Riesz isomorphism 7 — (7, -)c maps
the unembedding representation fy, of each concept W to its embedding representation Ay, :

(Tws> )= AJV- (3.5)

Proof. The causal inner product defines the Riesz isomorphism ¢ such that ¢(y) = (7, ).
Then, we have

¢(Tw)dw) = Fw,Tw)c >0 and ¢ (Fw)(iz) = (Fw,72z)c =0, (A.19)

where the second equality follows from Definition 6. By Lemma 4, ¢ (f,) expresses the
unique unembedding representation A, (up to positive scaling); specifically, ¢ (7y,) = AVTV
where 1], : 7 — A7 O

A.5 Proof of Theorem 8

Theorem 8 (Explicit Form of Causal Inner Product). Suppose a causal inner product, rep-
resented as (7,7 )c = 7' My’ for some symmetric positive definite matrix M, exists. If there
are mutually causally separable concepts {Wk}izl, such that their canonical representations
G =I[{w, " »7w,] form a basis for T' ~ RY, then under Assumption 1,

M~ =GG" and G'Cov(y)™'G =D, (3.6)

for some diagonal matrix D with positive entries, where y is the unembedding vector of a word
sampled uniformly at random from the vocabulary.

Proof. Since (-,-)¢ is a causal inner product,
0=, Mf;z (A.20)

for any causally separable concepts W and Z. Also, My, is an embedding representation
for each concept W; for i = 1,---,d by the proof of Lemma 4 and Theorem 7. Thus, by
Assumption 1,

_ =T _T
0 = Cov(y,, My, ijMy) (A.21)
= 7, MCov(y)MTy,. (A.22)
for i # j. By applying (A.20) to the basis G = [7y,, ", 7w, ], we have
I=G'MG (A.23)

as well as
D! =G MCov(y)MG, (A.24)

for some diagonal matrix D with positive entries. Then, M = G~ "G} and
Cov(y)=GD'G'. (A.25)

Therefore, we have (3.6). O
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Table 2: Concept names, one example of the counterfactual pairs, and the number of the used pairs

# Concept Example Count
1 verb = 3pSg (accept, accepts) 32
2 verb = Ving (add, adding) 31
3 verb = Ved (accept, accepted) 47
4 Ving = 3pSg (adding, adds) 27
5 Ving = Ved (adding, added) 34
6 3pSg = Ved (adds, added) 29
7 verb = V + able (accept, acceptable) 6
8 verb = V + er (begin, beginner) 14
9 verb = V + tion (compile, compilation) 8
10 verb = V + ment (agree, agreement) 11
11 adj = un + adj (able, unable) 5
12 adj= adj +ly (according, accordingly) 18
13 small = big (brief, long) 20
14 thing = color (ant, black) 21
15 thing = part (bus, seats) 13
16 country = capital (Austria, Vienna) 15
17 pronoun = possessive (he, his) 4
18 male = female (actor, actress) 11
19 lower = upper (always, Always) 34
20 noun = plural (album, albums) 63
21 adj = comparative (bad, worse) 19
22 adj = superlative (bad, worst) 9
23 frequent = infrequent (bad, terrible) 32
24 English = French (April, avril) 46
25 French = German (ami, Freund) 35
26 French = Spanish (année, afio) 35
27 German = Spanish (Arbeit, trabajo) 22

B Experiment Details

The LLaMA-2 model We utilize the llama-2-7b variant of the LLaMA-2 model [Tou+23],
which is accessible online (with permission) via the huggingface library.” Its seven billion
parameters are pre-trained on two trillion sentencepiece [KR18] tokens, 90% of which
is in English. This model uses 32,000 tokens and 4,096 dimensions for its token embed-
dings.

Counterfactual pairs Tokenization impedes using the meaning of an exact word. First, a
word can be tokenized to more than one token. For example, a word “princess” is tokenized
to “prin” + “cess”, and y(“princess”) does not exist. Thus, we cannot obtain the meaning
of the exact word “princess". Second, a word can be used as one of the tokens for another
word. For example, the French words “bas” and “est” (“down” and “east” in English)

” o«

are in the tokens for the words “basalt”, “baseline”, “basil”, “basilica”, “basin”, “estuary”,
7 [13

“estrange”, “estoppel”, “estival”, “esthetics”, and “estrogen”. Therefore, a word can have
another meaning other than the meaning of the exact word.

When we collect the counterfactual pairs to identify ¥y, the first issue in the pair can be
handled by not using it. However, the second issue cannot be handled, and it gives a lot of
noise to our results. Table 2 presents the number of the counterfactual pairs for each concept

Shttps://huggingface.co/meta-llama/Llama-2- 7b-hf
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Table 3: Concepts used to investigate measurement notion

Concept Example Count

English = French (house, maison) (209, 231)
French = German (déja, bereits) (278, 205)
French = Spanish  (musique, musica) (218, 214)
German = Spanish (guerra, Krieg) (214, 213)

Table 4: Contexts used to investigate intervention notion

J X

1 Long live the

2 The lion is the

3 In the hierarchy of medieval society, the highest rank was the
4 Arthur was a legendary

5 He was known as the warrior

6 In a monarchy, the ruler is usually a

7 He sat on the throne, the

8 A sovereign ruler in a monarchy is often a

9 His domain was vast, for he was a

10 The lion, in many cultures, is considered the
11 He wore a crown, signifying he was the

12 A male sovereign who reigns over a kingdom is a
13 Every kingdom has its ruler, typically a

14 The prince matured and eventually became the
15 In the deck of cards, alongside the queen is the

and one example of the pairs. The pairs for 13, 17, 19, 23-27th concepts are generated
by ChatGPT-4 [Ope23], and those for 16th concept are based on the csv file®). The other
concepts are based on The Bigger Analogy Test Set (BATS) [GDM16], version 3.07, which is
used for evaluation of the word analogy task.

Context samples In Section 4.2, for a concept W (e.g., English=>French), we choose
several counterfactual pairs (Y(0),Y (1)) (e.g., (house, maison)), then sample context {x;)}
and {x}} that the next token is Y(0) and Y (1), respectively, from Wikipedia. These next
token pairs are collected from the word2word bilingual lexicon [ CPK20], which is a publicly
available word translation dictionary. We take all word pairs between languages that are
the top-1 correspondences to each other in the bilingual lexicon and filter out pairs that are
single tokens in the LLaMA-2 model’s vocabulary.

Table 3 presents the number of the contexts {x?} and {x}} for each concept and one example
of the pairs (Y(0),Y(1)).

In the experiment for intervention notion, for a concept W, Z, we sample texts which Y (0, 0)
(e.g., “king”) should follow, via ChatGPT-4. We discard the contexts such that Y (0, 0) is not
the top 1 next word. Table 4 present the contexts we use.

6https: //github.com/jmerullo/lm__ vector__arithmetic/blob/main/world__capitals.csv
"https://vecto.space/projects/BATS/
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W: male = female, Z: English = French
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Figure 6: ZJVY and i}y are independent for the causally separable concepts W =male=>female and
Z =English=>French. The plot of )7;)/ and ?}—y shows that the independence is not common.

W: verb=3pSg, Z: verb= Ving
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Figure 7: 7_[‘,[,)/ and J_L}—}/ are not independent for the non-causally separable concepts W =verb=>3pSg
and Z =verb=Ving.

Validation for Assumption 1 In Figure 6, we check that ZVTVY and 71}}/ are independent
for the causally separable concepts where Ay is estimated by (4.2). On the other hand,
Figure 7 shows that AVTV}/ and A;)f are not independent for the non-causally separable
concepts.

C Additional Results

C.1 Histograms of random and counterfactual pairs for all concepts

In Figure 8, we include the analog of Figure 2, where we check the causal inner product
of the differences between the counterfactual pairs and an LOO estimated unembedding
representation for each of the 27 concepts. While the most of the concepts are encoded in
the unembedding representation, some concepts, such as thing=>part, are not encoded in
the unembedding space T'.
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C.2 Additional results from the measurement experiment

We include the analog of Figure 3, where we use each of the 27 concepts as a linear probe
on either French=>Spanish (Figure 9) or English=French (Figure 10) contexts.

C.3 Additional results from the intervention experiment

In Figure 11, we include the analog of Figure 4, where we add the embedding representation
al¢ (4.2) for each of the 27 concepts to A(x;) and see the change in logits.
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