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Tutorial 8 – Introduction to Lambda IV: 
AWS Step Functions, AWS SQS 

 
Disclaimer: Subject to updates as corrections are found 

Version 0.10 

 
The purpose of this tutorial is to introduce the use of AWS Step Functions to instrument control flow for multi-
function serverless applications. The tutorial also provides a brief introduction to the Simple Queue Service 
(SQS).  
 
AWS Step Functions support defining state machines to specify the serverless application control flow for a 
serverless application.  Using AWS step functions, control flow is implemented on the cloud-provider’s side.  
The client only needs to call the state machine to execute a workflow of functions.  For this tutorial, we will 
connect the Encode and Decode Lambda functions from Tutorial #4 using AWS Step Functions so that a 
message is passed into the Encode function, shifted, and then unshifted automatically by calling Decode. The 
AWS step function eliminates network traffic between the client and cloud server providing a speed-up. 
 
Tutorial #4 Caesar Cipher with a laptop client calling Lambda functions: 

 
 
Tutorial #8 Caesar Cipher with Step Functions client calling Lambda functions: 

 
 
1.  Update Caesar Cipher Lambda Functions For Use With AWS Step Functions 
 
When working with AWS Step Functions, data output from one Lambda function is passed to the next Lambda 
function as input.  To prepare the Encode and Decode Caesar cipher functions for use in an AWS Step Functions 
state machine, it is necessary to change the output of the encode function to generate the key/value pairs 
needed by the decode function. 
 
From Tutorial #4, modify the Response.java object so that the Encode function produces the follow JSON 
output: 
 
 

http://faculty.washington.edu/wlloyd/courses/tcss360
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Encode INPUT: 

 
{ 

  "msg": "ServerlessComputingWithFaaS", 

  "shift": 22, 

} 

 

Invoking Lambda function:ENCODE using AWS CLI 
 
real 0m1.004s 
user 0m0.312s 
sys 0m0 
 
Encode OUTPUT: 

 
{ 

  "msg": "OanranhaooYkilqpejcSepdBwwO", 

  "shift": 22, 

  "decodeTime": 0, 

  "encodeTime": 1, 

  "uuid": "501064cc-1b1e-4f91-9ed3-d2d04b599db7", 

  "error": "", 

  "vmuptime": 1543554220, 

  "newcontainer": 0 

 . . . (metrics from SAAF) 

} 

 
Here, the response of the encoding is returned using the “msg” key/value pair to match the input of Decode.  
The “shift” is also returned so this can be passed directly to decode. 
This JSON can now be passed directly to the decode Lambda function. 
 
Lines to add to the bottom of the Encode class handleRequest method: 

 
     // Set return result in Response class, class is marshalled into JSON 

      r.setMsg(msg); 

      r.setShift(shift); 

 
Lines to add to Response class: 
Here we assume that Encode and Decode are combined into a single Java project to build a single deployment 
JAR file for both the Encode and Decode functions: 
 
    String msg; 

    public String getMsg() 

    { 

        return msg; 

    } 

    public void setMsg(String msg) 

    { 

        this.msg = msg; 

    } 
 

    private int shift; 
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    public int getShift() 

    { 

        return shift; 

    } 

    public void setShift(int shift) 

    { 

        this.shift = shift; 

    } 
 

    long decodeTime; 

    public long getDecodeTime() 

    { 

        return decodeTime; 

    } 

    public void setDecodeTime(long decodeTime) 

    { 

        this.decodeTime = decodeTime; 

    } 
 

    long encodeTime; 

    public long getEncodeTime() 

    { 

        return encodeTime; 

    } 

    public void setEncodeTime(long encodeTime) 

    { 

        this.encodeTime = encodeTime; 

    } 

 

In addition to including message and shift, let’s also report the processing time for both the Encode and 
Decode Lambda functions.  This way when the two functions are composed together we can measure 
execution time of the individual Lambda functions. 
 
The Java System.currentTimeMillis() can be used to capture the system time before and after execution of code 
in the handleRequest() method. 
 
Add to the following code to the top of the handleRequest() method for both Encode and Decode: 
 
 long tStart = System.currentTimeMillis(); 
 
And then update the code at the bottom of the handleRequest() method to: 
 
        long tEnd = System.currentTimeMillis(); 

        r.setDecodeTime(tEnd - tStart); 

        return r; 

    } 

 

After making these code changes, redeploy your Encode and Decode Lambda functions. 
Test that changes are applied by running callservice.sh as in Tutorial #4. 
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2.  Create AWS Step Functions State Machine 
 
Search for the “Step Functions” cloud service in the AWS Management Console.   
On your first visit, a “splash” screen is shown.  Click on the “Get started” button: 
 

 
 
On the top of the screen, Skip the Hello World example, and instead select the link to the right: 
“design your own workflow here”. 
 

 
 
Select “Author with code snippets”: 
 
 

 
 

For the Type, select “Standard”. 
 

Scroll down and replace the definition with the following JSON being sure to update your function ARNs: 
 
{ 

  "Comment": "Ceasar Cipher using AWS Lambda functions", 

  "StartAt": "Encode", 

  "States": { 

    "Encode": { 

      "Type": "Task", 

      "Resource": "<replace with your aws lambda encode arn>", 
      "Next": "Decode" 

    }, 

    "Decode": { 

      "Type": "Task", 

      "Resource": "<replace with your aws lambda decode arn>", 
      "End": true 

    } 

  } 

} 
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Each Lambda function has an Amazon Resource Name (ARN).  An ARN is similar to a URI (uniform resource 
identifier).  It is a unique identity for the AWS object. 
 
Find your ARN for your encode and decode Lambda functions. 
 
In a separate window, navigate to AWS Lambda. 
At the top of the function designer, in the Function overview, on the right-hand side the ARN is shown: 
 

 
 

There is a convenient COPY-icon on the left-hand-side to COPY the ARN to the clipboard:  

 
Click the COPY icon.  

 
Copy the ARN for encode and decode into the state machine definition. 

 
When you copied the JSON into the Definition editor, the rendering of your state machine should have 
automatically refreshed.  If not, press the REFRESH button. 

 

   
 

This will update the diagram to reflect the JSON definition. 
 
Now, click the [NEXT] button. 

 
Assign a Name to this state machine. 
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It is necessary to grant the state machine permission to access cloud resources consumed.  The easiest 
approach is to allow Step Functions to automatically create a unique role for the state machine based on the 
resources required. 

 
Select the radio button: “Create new role”. 
The role will be assigned an automatically generated unique name. 

 
Next, click the “Create state machine” button to create the state machine: 

 

 
 
For more information on Step Functions, refer to the developer guide: 
 

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html  
 

On the left hand-side check out documentation on State, Tasks, Transitions, State Machine Data, and Input and 
Output Processing. 
 

Limited input and output processing is supported within the state machine without writing a separate Lambda 
function: 
 

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-input-output-filtering.html  
 
3. Create a BASH client to invoke the AWS Step Function 
 
AWS step function state machines can be invoked using the AWS CLI. 
 

For step 3, customize the provided BASH script provided below to invoke your step function.  Call this script 
“callstepfunction.sh”. 
 

The script requires installation of the awscli and jq packages.   
These have been used in previous tutorials. 
 

sudo apt install awscli jq 
 

Next, add your state machine Amazon Resource Name (ARN) to the script: 
 

# JSON object to pass to Lambda Function 
json={"\"msg\"":"\"ServerlessComputingWithFaaS\",\"shift\"":22} 

smarn="<replace with state machine arn>" 
exearn=$(aws stepfunctions start-execution --state-machine-arn $smarn --input 

$json | jq -r ".executionArn") 
 

# poll output 

output="RUNNING" 

while [ "$output" == "RUNNING" ] 

do 
  echo "Status check call..." 
  alloutput=$(aws stepfunctions describe-execution --execution-arn $exearn) 

  output=$(echo $alloutput | jq -r ".status") 

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-input-output-filtering.html
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  echo "Status check=$output" 

done 
 

echo "" 
aws stepfunctions describe-execution --execution-arn $exearn | jq -r ".output" | 

jq 

The “aws stepfunctions start-execution” command launches an asynchronous execution of the state machine.  
The execution ARN is captured by the script. 
 
Then, to determine when the state machine has completed, successive calls are made to “aws stepfunctions 
describe-execution” using the execution ARN to check the status. (polling!!) 
 
When the state machine is no longer running, a call is made to describe-execution to capture the JSON result. 
 
4. Create a Simple Queue Service Queue for messages 
 
Using the AWS Management Console, navigate to the “SQS” cloud service.  On the first visit the splash screen 
will appear.  Press the “Create queue” button: 
 

 
 
The Simple Queueing Service supports FIFO Queues which ensure first-in, first-out processing if needed: 
 

https://aws.amazon.com/about-aws/whats-new/2019/02/amazon-sqs-fifo-qeues-now-available-in-15-aws-
regions/  

 
Assign the Queue name as “CaesarQ”, and select a “Standard Queue”: 
 

 
 

https://aws.amazon.com/about-aws/whats-new/2019/02/amazon-sqs-fifo-qeues-now-available-in-15-aws-regions/
https://aws.amazon.com/about-aws/whats-new/2019/02/amazon-sqs-fifo-qeues-now-available-in-15-aws-regions/
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For the Configuration, set the “Receive Message Wait Time” to be “20” seconds: 

 
Then click [Create Queue]: 

 
 

5. Add a message to your SQS Queue from a Lambda function 
 

Now, modify the decode Lambda function to most the decoded message to your SQS queue. 
 

First, in your maven build file (pom.xml) add the dependency to include the SQS API: 
 
        <dependency> 
            <groupId>com.amazonaws</groupId> 
            <artifactId>aws-java-sdk-sqs</artifactId> 
            <version>1.11.460</version> 
        </dependency> 

 
Next, modify the tail end of the Decode Lambda function’s handleRequest() method to submit a message to 
your newly created SQS queue.  Post the decoded message to the SQS queue for consumption. 
 

Pressing control-shift-i in Netbeans automatically adds import statements. 
The following import statements should be added: 

import com.amazonaws.services.sqs.AmazonSQS; 

import com.amazonaws.services.sqs.AmazonSQSClientBuilder; 

import com.amazonaws.services.sqs.model.SendMessageRequest; 

 

Then the code to add a message to an SQS queue is as follows: 

 
        AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient(); 

        SendMessageRequest send_msg_request = new SendMessageRequest() 

        .withQueueUrl("<INSERT SQS URL here>") 

        .withMessageBody(msg) 

        .withDelaySeconds(0); 

        sqs.sendMessage(send_msg_request);    

      
SQS queues use public http URLs for communication. 
The public SQS URL for your queue can be found in the Details window pane once selecting the queue 
“CaesarQ” from the list of queues to inspect the queue’s configuration. 

 
The URL property is listed under Details in the SQS GUI as below: 
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Next, compile, build, and redeploy your Lambda Decode function. 
 

** IMPORTANT CHANGES to DECODE LAMBDA FUNCTION ** 
 

Two important changes are required for Decode to use SQS.  First, Decode can no longer run in a VPC to use 
SQS unless the VPC has a NAT Gateway configured to enable public internet access.  Because the NAT gateway 
is very expensive, it is easier to simply delete the VPC, and set the Lambda function to use “None”.  If you have 
configured a VPC for your Lambda function, remove it now by selecting None:   
 

 
 
Next, modify the security role for the Decode Lambda function to have permission to work with SQS queues. 
In AWS Lambda, select your function, then select the Configuration Tab, and select “Permissions” on the left. 
Use the BLUE link to modify the Decode function’s security role: 
 

 
 
In the role editor, select the button to attach a policy: 

 
 

Search for and attach the policy “AmazonSQSFullAccess”. 
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6. Modify BASH client to retrieve AWS Step Function result from SQS queue 
 
Previously we polled the AWS Step Function by calling “aws stepfunctions describe-execution” repeatedly until 
a result was available.  Now that Decode posts the message result to a queue, the result can be fetched from 
the queue instead. 
 
If programming a Java or Python client to interact with a message queue, it would be possible to “subscribe” to 
the queue to receive messages as events.  Note, this is the classic publish-subscribe message queue model 
common for distributed systems.  AT UW-Tacoma, these queues are discussed in TCSS 558 Applied Distributed 
Computing. 
 
The AWS CLI does not support a callback mechanism. 
 
Instead, the CLI offers a blocking call that will call SQS and wait up to 20 seconds for a message to return.  If no 
message appears, the call exits. 
 
Modify your AWS Step Functions BASH client (callstepfunction.sh) to receive the Decode result back from SQS 
instead of from AWS Step Functions. 
 
Directly replace all code above the “# poll output” comment in your callstepfunction.sh script to include the 
following code: 

smarn="<Your State Machine ARN>" 

 

# a file-based counter to generate unique messages for encode/decode 

count=0 

if [ -e .uniqcount ] 

then 

  count=$(cat .uniqcount) 

fi 

count=$(expr $count + 1) 

echo $count > .uniqcount 

 

# JSON object to pass to Lambda Function, uses the unique $count  

json={"\"msg\"":"\"NEW-SQS-$count-

ServerlessComputingWithFaaS\",\"shift\"":22} 

 

# Call the state machine 

exearn=$(aws stepfunctions start-execution --state-machine-arn $smarn --

input $json | jq -r ".executionArn") 

echo $exearn 

 

# get output from SQS 

msgs=$(aws sqs receive-message --queue-url <Your SQS Queue name>) 
 

# show result from SQS queue 

echo $msgs | jq 

 

# delete the message from the queue using the receipt handle 

receipthandle=$(echo $msgs | jq -r .Messages[0].ReceiptHandle) 
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aws sqs delete-message --queue-url <Your SQS Queue name> --receipt-handle 

$receipthandle 

 

exit 

 

Messages in SQS queues are not deleted when read.  Since we only want to consume this message once, use 
the receipthandle when calling the “aws sqs delete-message” CLI API to delete the message once it is read. 
 
If messages are not deleted they will pile up in the queue, and requests to “aws sqs receive-message” may 
return a message from a previous execution of the state-machine. 
 
Where SQS FIFO queues guarantee the order that messages will be delivered to clients, standard SQS queues 
do not guarantee ordering of messages.  When calling “sqs receive-message” on a standard queue, its possible 
the latest message is not returned! 
 
By deleting messages once consumed, we shouldn’t accidentally see them again.   
 
The approach here will not scale, however!  With multiple users executing the state machine concurrently, calls 
to “aws sqs receive-message” are not client specific.  All of the results from the state machine are posted to the 
same queue.  It is possible to tag messages with a “GroupId” or a “DeduplicationId” for this purpose.  This 
allows filtering of messages.  If sharing a queue with many users, it may be necessary to pull batches of 
messages, filter them, and only consume and delete the client’s specific message.  For these reasons, S3 may 
be preferable method for returning a single state machine result to a client as it can be tagged by the client 
through the workflow.  Message queues are more ideally suited for distributed systems to orchestrate multiple 
nodes consuming and operating on shared data.   
 
Now, test your callstepfunction.sh BASH client and check out how well SQS works as an alternative to 

polling the aws stepfunctions describe-execution API. 
 
Tutorial 8 is optional and offered as extra credit in fall 2021. 
 

 

To submit this tutorial 
 
To submit tutorial #8, a demonstration can be made over Zoom to show correct operation of the 
callstatemachine.sh script.  Demos can be made after class on Tuesdays and Thursdays, or during office hours, 
or by appointment.   
 
If you're unable to demonstrate the working tutorial in person, please submit a video recording demonstrating 
that Tutorial 8 is working properly.  Mp4 recordings can be made using Zoom.  Create a personal Zoom session.  
Share the screen.  Record your video to the cloud.  While demonstrating operation of the script, feel free to 
speak and describe what is happening.   
 
To submit your tutorial, upload each of the following to Canvas: 
 
1. VIDEO LINK: IF YOU WERE UNABLE TO PRESENT A WORKING SCRIPT OVER A LIVE ZOOM SESSION: please 
provide an mp4 video recording, or a PDF file with a URL to the recording made using Zoom. Videos can 
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alternatively be hosted on Google Drive, a personal web server, or on YouTube. Please include a publicly 
accessible URL for the video to receive credit. 
2. callstatemachine.sh Bash script  
3. <OPTIONAL> screen captures can optionally be provided as a BACKUP in addition to the video recording 
 
For the demonstration, be sure to start with an empty queue. 
SQS messages can be purged using the GUI.  
 
Then demonstrate calling the state machine by calling it twice with two different JSON messages.   
 
Message 1: encode-→ decode “this is a unique message” 
Message 2: encode → decode “second message of the demo” 
 
The strings must be different.   
 
The demo must show where in the callservice.sh BASH script the JSON object is created. 
Alternatively, the BASH script can echo to the screen the message text before processing with Encode.   
 
Your queue messages must be unique. 
This should work because in callservice.sh a local counter has been added to ensure that each message is 
tagged with a unique ID. 
 
 
 

 


