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ABSTRACT
Continuous integration, delivery, and deployment (CICD) is widely
used in DevOps communities, as it allows for teams of all sizes to
deploy rapidly-changing hardware and software resources quickly
and confidently. In this paper, we will describe how University of
Colorado Boulder Research Computing has adopted these prac-
tices on the RMACC Summit supercomputer [17] to allow system
engineers and researchers alike to capitalize on the benefits of
CICD-centric development workflows. We will introduce the topic
of CICD at a high level and describe how such practices can ease
common software management challenges for High-Performance
Computing (HPC) resources. We will then document the infras-
tructure deployed for Summit, and explain how software such as
Jenkins and Singularity enabled adaptation for an HPC environ-
ment. We will conclude with two case studies discussing the use
of our CICD infrastructure: one case study from the perspective
of a system engineer maintaining user-facing resources, and the
other case study from the perspective of a researcher developing,
maintaining, and using the MFiX-Exa codebase.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Software libraries and
repositories; Software testing and debugging; Software version con-
trol; System administration; Maintaining software;
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1 INTRODUCTION
HPC resources have complex and dynamic software needs that are
challenging to manage and maintain. Users often want the latest
software available for their research or development, which drives
the need for frequent installation and updates. Since clusters are
most often a shared resource with specialized hardware, software
must be managed centrally by a system engineer to ensure that it
has been optimized for the resource and functions with existing
software in the stack. Administrators currently address these com-
plex software needs with tools such as Lmod environment modules,
Easybuild [21], Spack [20], and Puppet [9]. However, even with
these tools software management in an HPC environment includes
manual and error-prone steps. Newly installed software needs to
be tested and benchmarked to ensure users make optimal use of the
HPC resource. Users developing HPC software need to build their
code and run similar correctness tests and benchmarks. Adminis-
trators and developers deploying other user-facing services such
as gateways need to build and test those environments as well.

While HPC software management is a complex process, it shares
many of the same challenges with enterprise-scale software de-
velopment which requires reliable updates and validation on a de-
manding schedule. In the past several years industry leaders have
established a set of practices referred to as Continuous Integra-
tion and Continuous Delivery (CICD) to address these challenges.
CICD is comprised of two phases of a modern software delivery
pipeline that fully automate the transformation of code changes
into the release of viable production software. In this context Con-
tinuous emphasizes that the full pipeline is run automatically after
each commit. This approach obviates the need for complex merge
and test procedures prior to release, because each commit is trans-
formed immediately into releasable software. Automation is critical
to these phases as it ensures that each commit is subject to the
same procedure to build, test, and release. It eliminates error-prone,
manual steps in the software build and validation cycle. Another
core tenet of CICD is that software passes through multiple phases
of automated test suites, ensuring that all software that passes build
is production-ready.

While CICD has traditionally focused on the software devel-
opment lifecycle, the advent of practices such as Everything as
Code and new solutions like containers have extended CICD to
deliver complete software environments instead of just single appli-
cations. The evolved capabilities of modern CICD practices to test,
manage, and deploy full application environments has compelling
implications for the HPC software stack. Managing the stack as
a single unit is no longer necessary as it can be decomposed into
smaller, more testable components. University of Colorado Boulder
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Research Computing has begun to employ modern CICD practices
to simplify the software the management process and increase the
frequency and reliability of releases. In this paper, we will describe
the CICD architecture currently deployed at CU Boulder, and de-
tail how it enables us to automatically build, manage, and deploy
containerized software stacks for use on the RMACC Summit Su-
percomputer. We will then provide two case studies of how this
architecture is being used to improve the software delivery life-
cycle both from the perspective of a researcher maintaining the
MFiX-Exa codebase, and a system engineer managing user-facing
services.

2 RELATEDWORK
Managing and automating the configuration of the heterogenous
hardware and software environments that comprise HPC resources
is commonly handled by configuration management tools like Pup-
pet. CU Boulder Research Computing and other HPC providers have
employed this method with great success. Configuration manage-
ment reduces the complexity of cluster environments by consolidat-
ing configuration into a single source, and allows for infrastructure
to be defined as code [9, 22, 27].

There have been multiple efforts to realize the benefits of con-
tainerized software environments in an HPC context. These solu-
tions most often take the form of HPC workloads containerized
with Docker, allowing for the jobs to run in an arbitrary software
environment that would not have been possible on the host system
[23]. Security concerns with the use of Docker on a shared resource
[19] have led to the rise of several containerization solutions built
specifically for the needs of HPC, such as Singularity [24], Shifter
[18], and CharlieCloud [25].

Jenkins has been utilized by several groups to facilitate auto-
mated performance monitoring of both scientific software and
hardware resources. Vergara et al. use a CI workflow powered by
Jenkins to automate application-level benchmarking to determine
the impact of hardware and software changes on code performance
[28]. Voss et al. have used Jenkins for a similar purpose of auto-
matically benchmarking the performance of the Stampede2 and
Lonestar5 supercomputers [29].

3 ARCHITECTURE
Wewanted to develop a CICD infrastructure that would support the
development and management of scientific codes and software en-
vironments for HPC end-users using container-centric workflows.
Containerization was our targeted strategy because it enables us to
decompose software environments traditionally managed by hand
into testable, distributable components. Even where a configura-
tion management solution like Puppet manages specific software
environments, breaking the environment out into smaller, self-
contained units enables a higher degree of reliable testing while
being more durable with respect to hardware and related environ-
ment changes.

Our software, the Singularity specification files, the deploy-
ment infrastructure, and even the build pipeline are treated like
application code. This approach ensures that all aspects of soft-
ware management conform to the same levels of rigor as software,
and provides greater confidence in the provenance and reliability

of changes. As a result of this everything-as-code approach, all
changes originate in a version control system and propagate down
the pipeline.

Jenkins serves as the primary interface between version control
systems and deployment, and it also manages the container build
process for each image repository. For each project that we wish
to automate we configure a Jenkins job that polls the appropriate
repositories for changes, and starts a build when a change is made.
The build process clones the necessary repositories, and then builds
the image with Singularity. In each of our software repositories,
we place a Singularity recipe file [10] alongside application code,
mirroring the structure of image repositories in Docker Hub [3]
and Singularity Hub.

If the tests run in the Singularity %test block [10] pass, then
Jenkins proceeds with the build. Otherwise, Jenkins notifies via
email that the build has failed. This workflow is illustrated in Fig-
ure 1. If the container build and test cycles succeed, Jenkins then
uses the Singularity Global Client [11] to register and store the
image in Singularity Registry for consumption by downstream
services like configuration management or benchmarking jobs.

3.1 Singularity and Singularity Registry
Singularity is a containerization solution created specifically for the
needs of scientific software, allowing for mobility of compute and
reproducible science [24]. Singularity employs a different security
model than Docker which allows for built containers to be run as an
unprivileged user and does not require that the user interacts with
a privileged daemon process [24]. This security model made Singu-
larity an ideal choice for our infrastructure, as we are automating
the build of software environments that are either user-facing or
directly executable by the user.

Singularity Registry is a decentralized infrastructure for man-
aging and publishing Singularity images, which was generalized
from the Singularity Hub cloud service to allow for deployment at
individual institutions [26]. It has been optimized for local image
storage and provides features that allow for on-site authentication
services and container access control. In our pipeline the registry
takes the role of an artifact repository, as seen in Figure 1; it pro-
vides a mechanism to store, version, and publish containers built
during continuous integration by Jenkins. We have configured our
deployment of the registry to use our internal GitLab server [4] as
an OAuth provider for authentication.

3.2 Docker Compose
Singularity is an excellent container solution for the user-facing
services produced by our CICD infrastructure. The infrastructure
itself though is not intended for direct consumption by our users
and therefore does not inherit the same set of security concerns
that prompted the use of Singularity. As a result, we chose to con-
tainerize the infrastructure using Docker, which is a very mature
container solution built for microservices [16]. Using Docker for
the infrastructure allows us to leverage a large ecosystem of tools
and documentation for container orchestration, which helped us
to develop a highly portable solution and increased the variety of
build and test jobs that Jenkins could support.
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Figure 1: A high-level overview of the pipeline that transforms code changes into deployable software releases.

Compose is an orchestration tool for multi-container Docker
applications which defines service configurations in a YAML file,
and allows for application management with a simple command
line tool [2]. Managing our CICD infrastructure with Compose was
a natural fit, as we were already containerizing the Jenkins master
and agent software environments with Docker, and we wanted to
be able to easily package, distribute, and deploy our infrastructure
elsewhere within our resources and potentially to other HPC sites.

We based our Compose configuration off of the one distributed
with the Singularity Registry repository [13] and reconfigured some
services within it to be used for Jenkins as well as the registry. Dock-
erfiles for Jenkins agents and configuration for the Jenkins agents
and master were added to the registry configuration so that the
entire infrastructure could be captured in the same configuration.

3.3 Jenkins
Jenkins is an open-source automation platform [5] that is widely
used for building and deploying software. It is highly-extensible
via plugins, provides a convenient GUI for creating and editing
build processes, and is currently in use at several HPC sites as a
general-purpose automation tool [29].

Jenkins supports several different styles of build job configura-
tion and we chose the Pipeline method because it is easier to place
under version control and is growing in popularity, which is increas-
ing the number plugins and support available. Jenkins pipeline jobs
are configured by a specially-formatted Groovy script that defines
each step of the build process, and where the step should execute.

The process for cloning a code repository containing a Singu-
larity recipe, building the image, running tests, and publishing via
Singularity Registry is consistent between projects, so we have bro-
ken the build process out into a Shared Library. A Shared Library
is a mechanism for separating out components of a Groovy build
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pipeline into importable libraries to facilitate reuse. Shared libraries
also allow us to version the Singularity build pipeline independently
of any project, obviating the need to insert a Jenkinsfile into each
project we wish to automate.

Our Jenkins agents run in Docker containers managed by the
same Docker Compose configuration as the rest of the infrastruc-
ture. Agents are used for container builds and publishing and are
thus provisioned with Singularity and the Singularity Registry
command-line tool. These agents use the JNLP protocol for commu-
nication and registration with the Jenkins master. This approach
allows us to scale the number of integration agents using the Docker
Compose scale command [2] without necessitating a configuration
change, as JNLP agents self-register with the master based on a
pre-defined secret.

For delivery jobs, we use the Jenkins SSH Plugin which allows
for the execution of shell commands on remote hosts [14]. The
remote execution allows for increased flexibility in where and how
deploy jobs run, as deploy resources can be managed directly from
Jenkins without the need to have a remote agent configured and
running. Most importantly deployment via the SSH Plugin allows
us to defer deployment procedures to systems we already have in
place, like Puppet and Slurm.

4 CASE STUDIES
4.1 Deploying User-Facing Software

Environments
For many of our users, JupyterHub [6] serves as a primary access
point to our cluster resources. JupyterHub is a multi-user proxy and
process manager for single-user Jupyter Notebooks, which enable
the authoring and execution of interactive code documents [15].
Jupyter Notebooks are capable of supporting many different soft-
ware stacks and languages and can be extended by way of plugins.
While supporting a wide range of Jupyter use cases has increased
the productivity of many of our users, it has also necessitated the
maintenance of a complex software environment that is sensitive
to updates and dependency changes.

We have traditionally managed the Jupyter notebook software
environment as part of our environment module stack, which has
predominantly been a manual process. Integrating Notebooks into
our module stack has also created challenges related to software
inter-dependencies, as the Jupyter ecosystem evolves at a more
rapid pace than we can accommodate with our module stack. This
ultimately leads to an overly rigid set of dependency versions that
must be supported. Updating Jupyter and dependent software be-
comes a tedious process of trial-and-error down the road, discour-
aging frequent updates and feature additions.

Since many of the changes made to our module stack and the
Jupyter notebook integration were performed by hand, we had no
mechanism outside of documentation to accurately capture the
versions and configuration of the environments we deployed to
our cluster. Over time this often led to configuration drift between
staging and production environments, and worse still it made it
difficult to return to working configurations in the event of a failure.

We wanted to modernize this error-prone, manual process and
deliver updates to our users more quickly and confidently. To ac-
complish this we chose to containerize our Jupyter Notebooks with

Singularity. Using containers made it possible to encapsulate a
Notebook software environment in a reproducible way, and pro-
vide a heightened level of flexibility with respect to how we could
compose these environments. We could also use the same image
across staging, production, and manually-spawned environments,
eliminating configuration drift.

Each container runs a single-user notebook server, and is config-
ured to run either via JupyterHub process management, or manual
spawning by the user. The containers are composed of multiple
software layers overlaid upon one another during build by the
Singularity FROM tag. The starting layer is called the RC Service
Base [12]. This is a CentOS 7 layer configured to allow direct use
of important host services from within the container, including
SSSD for identity management and Slurm for job scheduling [30].
The RC Services Base is extended by the Jupyter Base. This layer
installs dependencies for JupyterHub so that Notebooks may be
spawned directly by the user or via JupyterHub, and configures the
environment so the Notebook servers use locations within standard
Singularity bind mount locations for user configuration and process
files. These two base layers ensure basic functionality of notebook
servers in our system. Further layers that provide additional soft-
ware to the notebook environment, such as PySpark or R, can build
on these base layers. This approach has proved valuable as it pro-
vides a reproducible, reliable method for distributing a variety of
software environments usable on our cluster resources. Breaking
up dependencies also allows for a variety of other software services
to be constructed using shared components that have already been
verified. This layered approach has made it possible to start dis-
tributing containers for use in our tutorials and training offerings
with minimal setup and validation.

To ensure proper functionality of each container, we have added
environment tests in the Singularity recipe %test block for each
layer. These tests run before the Jenkins build registers the new
container with the registry, and are used mostly for verifying basic
software functionality. Once a container passes validation and is
pushed to the registry, the Jenkins build job uses the SSH Plugin
to pull the container to our JupyterHub staging node for manual
verification if the commit was to the current development branch.
We hope to expand our automated tests to cover end-to-end work-
flows in our staging environments, but for now, we are using the
input step of the Jenkins pipeline plugin to await manual approval
before continuing. The pipeline tags the container as the current
release candidate after manual approval was received.

Containerizing our user-facing Jupyter notebook software stacks
has made it possible for us to deliver more feature-rich environ-
ments to our users quickly and confidently. These new environ-
ments are no longer susceptible to general resource changes and
can be used as building blocks for more user-facing software. The
portability of these environments enables us to, with a single con-
tainer, support multiple different use mechanisms. Automating the
delivery and deploy process ensures that each environment change
is automatically tested where possible, and imposes structure to
manual verification where necessary. Despite the manual verifi-
cation steps, we have obviated the need for any by-hand changes
to staging and production environments, which has improved the
accuracy of our updates tremendously.
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4.2 MFiX-Exa Benchmark Automation
The multiphase flow with interphase exchanges (MFiX) project
[8] is a computational fluid dynamics (CFD) code developed by by
the National Energy Technology Laboratory (NETL). MFiX-Exa
[7] is a rewrite of the original MFiX built on top of AMREX [1] to
enable it to run on future exascale computing systems. Running
MFiX-Exa at exascale will allow for industrially relevant problems
to be solved in reasonable wall time. With support of DOE grant
FE0026298, University of Colorado Boulder Research Computing is
contributing to MFiX-Exa by focusing on single node performance
aspects of the code.

A typical software engineering paradigm is correctness first, per-
formance later. Exascale software, however, must be designed with
performance in mind to be successful. Much like code correctness,
the performance of exascale software needs to be monitored while
it is developed so that improvements and regressions can be tracked.
Similar to other CFD codes, the performance of MFiX-Exa changes
based on the problem it is simulating. MFiX-Exa has a ’tiny profiler’
built-in which tracks the total time for a run as well as inclusive
and exclusive function timings. Using the ’tiny profiler’, a variety
of test cases are run to measure the performance of MFiX-Exa.

Like many other CFD codes, testing MFiX-Exa for correctness
is not a straightforward task. The MFiX-Exa repository includes
many smaller simulations which are run in the Singularity %test
block that runs and verifies small physical simulations. However,
the correctness of larger simulations is not certain even if these
tests pass. Fortunately, one of the performance benchmarks we
chose has a theoretical result which can be plotted and compared
to the simulated result. While this comparison adds a manual step
to the pipeline, it boosts our confidence in the results.

The MFiX-Exa CICD pipeline starts with the Jenkins Master
polling the develop branch for new code commits three times a
week. A typical CI pipeline might build the project following every
commit, but the allocated compute time for the MFiX-Exa project
limits the scope and number of benchmarking jobs that can be run.
When new commits are found, Jenkins JNLP agents build MFiX-
Exa in a Singularity container. The MFiX-Exa Singularity container
consists of two layers: a base layer which includes MFiX-Exa’s
dependencies and an mfix layer which installs the latest version of
MFiX-Exa. MFiX-Exa’s dependencies change infrequently, which
means the base layer rarely needs to be built. This saves time for
most builds as only the mfix layer needs to be built. After the
container is built, the tests in the Singularity %test block are run.
If the tests pass, Jenkins pushes the container to the Singularity
registry. Next, we use the Jenkins SSH Plugin to submit a Slurm
job which pulls the latest container from Singularity Registry and
benchmarks MFiX-Exa. At the end of the benchmarking job, a
Python script using Numpy and Matplotlib plots benchmarking
results and correctness comparisons where applicable.

Figure 2 shows an example benchmarking result created with
the CICD pipeline. Specifically, Figure 2 displays the weak scaling
results for the Homogeneous Cooling System (HCS) case versus
date and commit. Figures like these help associate performance
changes to commits without manually benchmarking and plotting
results.

Figure 2: Change in performance of the HCS case over time
for a variety of processor counts.

The CICD pipeline solves many reproducibility and portability
issues prevalent in HPC software development. When discussing
the latest benchmark results, common issues occur such as:

• Comparing results from different commits and branches
• Comparing simulations where different compile flags were
used

• Comparing scaling results from simulations with different
parameters

• Comparing results from different compilers and MPI imple-
mentations

• Comparing results from different operating systems
• Comparing results on different hardware (network, CPU,
etc)

The MFiX-Exa Singularity container documents the build process,
ensures that the same compiler and MPI implementation are used,
tests the code, and can be run to verify the performance on a variety
of hardware. The Singularity Registry facilitates sharing containers
and stores previous Singularity containers which can be reused to
verify previous results. Jenkins automates the process and elimi-
nates most manual steps. While some performance and correctness
comparisons are still manual, being able to skim through a few
plots greatly reduces the amount of time spent tracking down re-
gressions.

5 CONCLUSIONS
The complexity of HPC software stacks and the growing user de-
mand for new and up-to-date software necessitates that maintainers
of HPC resources employ solutions that enable frequent and reliable
updates to their resources. The advent of containerization solutions
that are viable in an HPC context has provided a mechanism for
separating certain types of HPC applications into self-contained,
reproducible, and testable environments. In this paper we have
demonstrated one approach to this problem that integrates Singu-
larity containers with common automation tools like Jenkins and
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Puppet to facilitate the adoption of CICD practices into HPC work-
flows, increasing the potential for delivering high-quality, reliable
software.
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